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ABSTRACT

This thesis 1investigates the applicability of VRTs
to the simulation of stochastic combat models. Ways of
measuring the efficiency of a VRT are explored.
Antithetic variates and stratified sampling are applied
to +the simulation of a +trivariate Markovian combat
model. Means of programming the antithetic variates a.«
stratified sampling to reduce the inherent variability
of uncertainty in the output data of the model are
illustrated. Response surface regression models are
used to characterize the performance of +the antithetic
variates and stratified sampling 1in the Markovian

combat model.
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I. INTRODUCTION

A. GENERAL

War policies and plans for military operations made
during peacetime are significant for the mission
accomplishments of combat operations conducted during
wartime. Sirnce experimentation with real combat is
infeasible, military analysts use stochastic combat
simulation models to study the effects of policy making
on combat operations. The analysts’' inferences drawn
from the results of these models are important to the
decision maker since he has to use them to make the
same decisions about military operations as he would if
he could experiment with real combat itself. The output
data from these models are realizations of random
variables distributed around the values of the
parameters of interest, or the models’ true
characteristics, so the analysts can only estimate
these parameters with error. The magnitude of error
for each estimate can be measured in terms of precision
or the variance of the estimate: 1f the estimate 1is
unbiased then the smaller the variance, the greater the
precision, and the smaller the error. Since the

decision maker wishes to make decisions that are based

on estimate(s) with a quantifiable error bound, the




analysts may find 1t possible. to apply specific
statistical techniques to measure and control the
variance of the estimate(s) to obtain a prescribed or
at least quantifiable level of precision.

The analyst’s capability of estimating a parameter
of interest with high precision depends on the extent
to which he 1is able to control the sample variance.
When the analyst uses the mean value of the sample
output data as the estimate of a parameter of interest
and when 1individual samples are independent, the
coefficient of the variance of the estimator is reduced
by a factor of 1/n where n is the sauaple size of the
output data. A large sample size yields an estimate
with a small variance and high precision. Multiple
replications to obtain a 1large sample size in complex
stochastic models c¢an be prohibitively expensive in
terms of resources like money, internal computer time,
computer storage space, etc. This 1is especially true
for large-scale, complex stochastic combat simulation
models, which often require hours rather than minutes
for a single computed replication. Since available
computer time is a compelling constraint on military
studies competing for scarce resources, the analyst is
usually given an allocated amount of time to simulate
his model. This specified amount of time may affect a

desired level of precision of the estimate(s) that the

;
:
:
E
3
E
:
:
:

IAEE § i ik e |

ot BRI

g




L
L)

Tyl

T EE IR R 17 Sl (RS

-
3
!".‘
e
il
i}_,
V)
£2 ]
-~
\l
- L]
-'i
ﬂ.
ﬂ.
&I
E
3
"o
e
o)
b d
-
L)
-

analyst wishes to obtain from the simulation. Since
the analyst can only execute a fixed number of
replications within this block of time, the sample size
(number of replications) may not be large enough to
achieve a variance small encugh to give the analyst an
acceptable precision for the estimate(s). Hence, the
analyst must either accept tihe particular level of
precision and error assocliated with such variance or
apply other specific statistical techniques which are
more likely to produce a smaller variance, and hence a
level of precision with which he can feel more
comfortable.

An economizing scheme in simulation to reduce the
variance of the estimator 1s to intentionally distort,
control, and modify the random properties of the input
variables 1in the simulation model. The output data
resulting from the manipulation of these random numbers
are random variables which are designed to be much
closer together and more closely distributed around the
trve value of the model's parameter of interest than is
the case with simple random sampling. A sampile
distribution resulting from such a variance-reducing
scheme has the same mean value but a potentialiy
smaller variance than the distribution of the sample
without the wusage of this scheme. The different

techniques for doing this scheme are called Variance




Reduction Techniques (VRTs). The effects of certain of

these, when applied to a combat model, are the subject

of this thesis.

B. BACKGROUND

VRTs were initially wused to evaluate multi-
dimensional integrals. They nave since been applied to
small Monte Carlo simulation problems but have not been
extensively utilized in large complex stochastic
simulation models. The utilization of these variance-
reducing techniques 1in real-world combat simulation
models 1is even less common Cr.nsequently, limited
examples of applications of VRTs in these simulation
models are found in the literature. The major reason
for this 1s ©because the performance of the VRTs is
suspected to be uncertain and unpredictable. The
analyst has no guarantee that the usage of VRTs will
work all the time. Futhermore, he has no way to know
beforehand how much variance reduction he will get from
the application of VRTs whenever they are effective.
However, VRTs, 1in our opinion, promise to be powerful
and effective tools 1in simulation 1f +the 1issues of
their performance in specific simulations are

understood. In this section we will describe the effect

that they can have on simulation studies. In Chapter V
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we 1llustrate their effectivepess for a particular

combat model.

The effectiveness of a VRT may be measured by the

relative efficiency of the simulation 1in obtaining i

i i,

estimate(s) with the utilization of this scheme, to

the efficiency of a simulation under the same
conditions without the VRT. Efficiency as Handscomb
(1969,p. 253) defines it is

Efficiency = 1 / (Variance * Work). (1)

Here "Work" &enerally refers to ccmputing time.
According to Handscomb, variance reduction succeeds if
the VRT increases efficiency. From Equation 1, we see
that a decrease in variance and/or work will increase
efficiency. Hence, variance reduction 1in simulation is
more than solely a decrease in the variance of the mean

of the estimators. Handscomb(1969,p. 253) calls a

technique variance-reducing if 1t "reduces the

variance proportionately more than 1t 1increases the
work involved" or "does not reduce the variance at all
in the usual sense, provided that it saves work." The

work involved 1n attaining estimates by simulation has

o FEZIZZ N e 557

many attributes. Hammersley and Handscomb(1964,p. 22)

suggest that +the number of simulation runs epitomizes

L

this work. However, we can easily measure this same
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work in terms of computing cost or/and simulation time.
For 1t 1s the availability of these factors that
ultimately determine the precision of the estimators.
Hence, an effective VRT may not only produce more
precise estimates but also economize the time and costs
assocliated with the simulation to obtain the level of
precision for those estimates. The efficiency of VRTs
will be discussed more fully in Chapter III.

This potential saving in computer time has
stimulated +the 1interest of the United States Army
Concept Analysis Agency (CAA) 1in the utilization of
VRTs. CAA has studied the effectiveness of a VRT in two
of its larger and more complex simulation models. The
results of these studies were mixed (Johnson, Bates,
and Graham, 1985). CAA therefore recommended the
continuation of the studies to 1investigate the
applicability of VRTs to reduce the 1inherent

variability in large, complex, stochastic combat

simulation models.

C. PURPOSE AND OBJECTIVE

The purpose of this thesis is to provide additional
insight 1into the applicability of VRTs to stochastic
combat models. and to provide a base for future studies
in the application of VRTs to large-scale, real world,

stochastic combat simulations. The objectives of this
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thesis are plainly to 1dentify those VRTs that are

~applicable, and then to exhibit their performance in

the applications to a <class of stochastic combat

simulation models. The question to be answered is: "Can

VRTs be 1dentified that are consistently effective for

reducing simulation time and cost?"

D. PRCBLEM

The problem for this thesis 1s to increase the
efficiency of a stochastic combat simulation model
ut*lizing VRTs in terms of (1) increased precision of
the model‘'s estimates for an allocated amount of
simulation time, and (2) reduced ccmputer time for a

predetermined level of precision.

E. APPROACH

In his doctoral dissertation, Andreasson (1972)
shcwed that variance reduction 1in queuing systems is
influenced by (1) the transformation of random numbers,
(1ii) the structure and parameters of the simulation
model, and (1ii) the <choice of the model response
quantity. Condition (i) is an attribute of the VRTs.
Conditicns (ii) and (iii) are characteristics of the
model. To solve the problem stated above, we
investigate the effects of the parameters of a

stochastic combat model, described in Chapter 1V of

12



this thesis, on variance reduction. We then use those
results to formulate our approach to increase the
efficiency of this model in terms stated in the blem

above.

F. ORGANIZATION OF THIS THESIS

This thesis 1s organized into 6 chapters. Chapter I
is the Introduction chapter. Chapter II reviews the
literature of VRTs in simulation. Chapter III discusses
ways of measuring the efficiency of a VRT and explores
the tradeoffs of measuring for increased precision of
estimation and reduced computer time. Chapter IV is
concerned with the simulation of a stochastic combat
mesel and the programming for variance reduction in the
simulation model. Chapter v deals with the
applicability and performance of VRTs in the simulation
model. In Chapter VI, we make conclusions about the
applicabllity of VRTs in stochastic combat models and
provide recommendations about their use in larger and
more complex, stochastic models that are used to study

real-world combat systems.

13




II. REVIEW OF LITERATURE

A. INTRODUCTION
The VRTs that we wuse to solve the problem stated

in Chapter I of this thesis are antithetic variates and

stratified sampling. But first we review the literature

of variance reduction 1ir. simulation. This chapter
concentrates on the practical applications of VRTs in
simulation models. We present a brief summary of works
of scholars and experts on this subject. We then
describe the basic concepts of two VRTs that we feel
are applicable to 1large-scale, complex, stochastic
combat simulation models. It 1is these two VRTs whose
performances we later exhibit 1in the combat model 1in

this thesis.

B. SUMMARY OF PREVIOUS WORKS

In the last 15 years interest in VRTs in simulation
has stimulated much activity on this topic 1n the
Operations Research community. This section does not
comprehensively review all works that have been written
in the 1literature, but 1t presents a brief overview of
the utilization of VRTs 1n simulation. The purpose of
this section 1s to summarize some of the studies of the

general applicability of VRTs in simulation.

14




Hammersley and Handscomb (1964) reviewed many of
the simplest 1ideas of variance reduction 1in simple
Monte Carlo problems as they can be applied in the
fields of Mathematics and Physics. Their most easily
understood examples and outstanding successes were the
evaluations of 1integrals and applications to particle
physics. Handscomb (1969, p.252-262) later suggested
that VRTs be adapted to simulation. He acknowledged
difficulties 1in predicting the effectiveness of the
techniques in particular situations, but he did
propose, in practice, "... to proceed by more or less
inspired trial and error, learning by experience which
tonls serve one best [or which techniques are
effective]." He also stated that it may be much harder
to tell how much variance reduction may occur in large
and complicated simulation problems. These 1ssues
remain major concerns for one using VRTs in large,
complex, stochastic simulation models.

Moy (1969, pp. 263-288) adapted several VRTs to
simulation and 1investigated their applicability to
queuling systems. He concluded that VRTs were indeed
capable of working 1in the simulation of queuing
systems. Kleijnen (1974, Ch. 1II1), who has written
probably the most comprehensive and most referenced
documentation on the subject of VRTs 1in simulation,

discussed the relevant differences between sampling in

15
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Monte Carlo problems and sampling 1in stochastic
simulation models. He showed that VRTs may be adapted
to accommodate these differences. Kleijnen also
presented a detalled description and critical appraisal
of six techniques so devised for wutilization 1in ‘he
simulation of 1large complex systems. These VRTs are

stratified sampling, importance sampling, selective

sampling, control variates, antithetic variates, and

common random numbers. These six sampling techniques

have become the most well-known and popular VRTs in the
literature.

Other less-~known VRTs, however, have been apprlied
to simulation. McGraft and Irving (1974) survey some 18
different techniques for implementation 1in large scale

simulation problems. McGraft and 1Irving 1include a

comprehensive listing of the characteristics,
advantages and disadvantages, and criteria for
applicability to large simulation models, and

demonstrate the effectiveness of several of these
techniques with a military simulation application.

Many other articles and papers have been written on
the subject of VRTs. There are too many of them to list
in this thesis, but the survey ranges from specific
techniques to more general methods 1in simulation
experimentation. Some of the most recent papers written

about the general applicability of VRTs in simulation

16



are Nelson (1985) and Cheng (1985). Textbooks that
illustrate the applications with simple but excellent
examples of variance reduction in simulation are Gaver
and Thompson (1973, Ch. 12), Fishman (1978, Ch. 3), Law
~and Kelton (1982, Ch. 1i), Morgan (1984, Ch. 7), and

Bratley, Fox, and Schrage (1987, Ch. 2).

C. DESCRIPTION OF VRTs USED IN THIS THESIS

Moy (1969, p. 263-288) experimented with antithetic
variates and stratified sampling and showed that they
are indeed capable of significantly decreasing
variability 1in the simulation of simple queuing
problems. Likewise, we wish to achieve similar results
when we apply them to the simulation of our stochastic
combat model. We do this in Chapter V. In this section,
we discuss the underlying conditions and fundamental
concepts 1in the applicability of antithetic variates
and stratified sampling in simulation.

1. Antithetic Varilates

The method of antithetic variates is relatively

well-known in the literature of variance reduction in
simulation (Kleijnen, 1974). It 1is one of +the most
useful VRTs because of 1its simplicity and general
applicability. When the method of antithetic variates
is used, the sampling process 1s modified Dby the

manipulation of random numbers. A simulation run

17




produces a response from the - original sequence of
random numbers (r); then, a second simulation run
produces an antithetic response from the sequence of
the complementary random numbers {(1-r). The average of
the two responses 1s an observation on the sample
output data of the stcchastic simulation model. The
mean value of this sample is estimated as the parameter
of interest.

The variance of this estimate is reduced if the
responses of the first and antithetic runs of each
replication are negatively correlated. Besides the
interchanging of the random numbers in each run, two
other conditions must occur to produce negative
correlation between the runs. First, each response must
be a monotonic function of its respective random number
stream; that 1is, large values 1n each stream of random
numbers should have an opposite effect on the response

than the small values, and vice versa. The second

condition is that the responses to the events 1in the
first run must be synchronized with the responses to
the events 1n the antithetic run. Synchronization,

defined by Kleijnen (1974, p. 193), occurs

...1f the 1’'th random number ry generates [in the
stream of the first run] a particular event (e.g.,
arrival of customer j) then in the antithetic run

(1 - ry) should generate the same event (i.e., not
the arrival of customer J' where J' # J and not a
service time).
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If the antithetic variates methodology, coupled
with required c¢onditions, is designed into the
simulaticn, then the average of the two negatively
correlated responses will tend to produce an estimate
with a high degree of precision. That 1is, if by chance
(r) yields a response above the value of the true
parameter of 1interest, then (i-r) should yield a
response below the value of the true parameter. When
these responses are averaged, the deviations between
the responses and +the true parameter approximately
offset each other resulting 1in relatively small net
variability in the output data. This idea can be shown
mathematically. Let X; be the response of the first
run; X5, the response of the antithetic run; and Y, the

average of X, and Xjp.

Y=(X1+X2)/2
VARy = 1/4 * ( VARyy + VARyp + 2 * COVX1,X2 )

= 1/2 *» (1 + CORRX1’X2) * VARYy;

Clearly, a negative CORRy1,x2 reduces VARy. If
CORRy1,x2 equals, or is close to, -1, then the VARy is
mathematically zero or very close to it. Hence, the
antithetic sampling is designed in simulation models sc
that the correlation between the pair of responses 1is

as close tc -1 as pu.ssitle.
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wNOnotonicity and synchronization must be
designedl into a simulation program for a particular
model . Kleijnen (1974), Law and Kelton (1982), and
Bratley, Fox, and Schrage (1987) are excellent
references that discuss ways to do this. We discuss our
design to achieve these two conditions for antithetic
variates in our model in Chapter IV. As stated before,
the method of antithetic variates 1s simple to
implzment and requires 1little to no extra computer
time. Because of simplicity of this VRT, examples of
its applications are 1illustrated in nearly every
textbook that considers the subject of VRTs.

2. Stratified Sampling

The stratified sampling technique, discussed in
this section and applied +to the simulation model in
chapter V of this thesis, is a different version of the
stratified sampling that Moy, Kleijnen and other
experts on VRTs have adapted to simulation. Handscomb (
1969, p. 261) calls this particular version of
stratified sampling another form of antithetic
sampling. Andreasson (1972, p. 6) refers to it as an
antithetic transformation. Gaver and Thompson (1973,
pp. ©585-586) name it stratification extending an
antithetic 1idea. It 1s indeed stratification in that
the sampling process 1is modified so that the range of

random numbers is divided into two or more strata from

20
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which the simulation runs produce responses. It has the
antithetic flavor in that the responses in all strata
are averaged together to get an observation which is
part of the sampl~ ~:tput data. This technique is also
similar to antithetic variates in that its estimator is
an average of correlated responses (Gaver and Thompson
1973, p.7586). Likewise, this estimator tends to have a
smaller variance.

In our review of this technique, we saw no
necessary conditions, 1like those for the antithetic
variates, for this technique to be successful 1in
simulation. The design of stratified sampling 1into our
simulation model 1in Chapter IV is similar to tiat one

&iven in Gaver and Thompson (1973, p.586).

D. SUMMARY

An abundant amount of material has been written on
the subject of variance reduction. Techniques used to
reduce the variance in Monte Carlo problems have been
adjusted to do the same 1in simulation models. The
applications of VRTs in simulation have ©been
illustrated 1in queuing systems and simple textbook
problems but successful applications to larger, more
complex, real-world stochastic simulation models have
not been so amply reported. There is no guarantee that

VRTs will work spectacularly for every situation 1in the

21
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simulation, and when they do work it is necessary to
estimate the magnitude of the variance reduction. Pilot
tests are encouraged to help resolve these issues.
Antithetic variates and modified versions of stratified
sampling are two of the more simple and easily employed

VRTs and will be applied to a stochastic cowmbat model
in Chapter V.
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III. EFFICIENCY OF VARIANCE REDUCTION

A. INTRODUCTION

In the last chapter we reviewed some studies that
involved VRTs. In this chapter we discuss the pr b em
of measuring the efficiency of a VRT. Comparing
variances of a parameter of interest obtained from the
simulations with and without the use of a VRT
respectively, on an ordinal scale, may reveal if the
VRT works, but it provides l1little information about how
well the VRT works. Clearly, a quantitative measure is

more desirable. Therefore, the manner or scale on which

the efficiency of a VRT is measured should provide as

much information as possible on the performance of a

VRT. In particular, it should provide at least some
base to answering the following questions:

(1) "Does the VRT work?"

\_ S LS

X

(i1) "If so, how great is the variance reduction in
terms of 1increased precision for estimating |
the parameter of interest?"

S

(iii) "How great is the variance reduction in terms
of simulation time saved for estimating the
parameter of interest?"

(iv) "What are the tradeoffs, if any, between the
potential increase in precision and the economy
of simulation time when applying VRTs?"

Yl dorl Sl

®
N In the next section we examine two methods that are
usually used in the 1literature to measure the
23
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efficiency of a VRT. We evaluate them in terms of how
well they answer the questions above. In the third
section, we offer a third alternative which is a hybrid
of the two previous methods for measuring tre
efficiency of a VRT. This third method, we think,
answers all four questions above and is used to measure
the efficiencies of the antithetic variates and the
stratified sampling techniques whose performance is
exhibited in this thesis. In the fourth section of this
chapter we show how to use the third method of
measuring the efficiency of a VRT to obtain the
tradeoffs between increased precision and reduced

simulation. The 1last section 1is a summary of this

chapter.

B. ASSESSMENT OF VARIANCE REDUCTION

In the 1literature the efficiency of a VRT is
usually measured by (1) a decrease in the variance
(Method #1) or (2) the relative efficiency of a
simulation to obtain an estimate using a VRT to the
efficiency of the simulation using no VRT (Method #2).
Henceforth, we refer to a simulation without the use of

a VRT as crude simulation.

Method #1 1is well defined in Kleijnen (1974, pp.
106-107). Kleijnen wuses this method by defining the

efficiency of a VRT as a percentage of reduction i~ variarce:
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Method #1 = (Varg - Vary) / Varg) * 100% (2)

where Varp and Var, are variances obtained in the same
amount of simulation time for crude simulation and
simulation applying a VRT respectively. The measure of
efficiency of a VRT which Kleijnen introduces may be
interpreted as that portion of the variance which 1is
not achieved by crude simulation but 1is obtainable in
the same amount of simulation using a VRT. The sign of
this portion determines whether the VRT 1increases or
decreases the precision; a positive sign reveals an
increase and a negative sign, a decrease. The magnitude
of the portion indicates how much of the precision is
increased or decreased respectively. With this method
we can also see that the VRT has an identical effect on
reducing simulation time for a prescribed 1level of
precision as it does on increasing precision. Method #1
provides answers to three of the questions stated in
the lacst section, but it does not resolve the question
of tradeoffs for increased precision and reduced time
in a simulation using VRT.

McGrath and Irving (1974, p. 295) use Method #2 to
measure the efficiency of a VRT. They initially used

this method, shown as Equation (3), to equate the
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relative advantage gained in simulation time by using a

v 1
L]

Method #2 =

Varg/Vary, * (Simulation Timegp)/(Simulation Timeq) (3)

where subscripts ©® and 1 represent crude simulation and

simulation applying a VRT respectively. The relative

efficieacy that McGrath and Irving used to measure the

efficiency of a VRT results in a factor by which the
efficiency of a simulation is increased or decreased by
using a VRT. If the value of this factor is greater
than one, then the VRT works; otuerwise, it does not.
The magnitude of this reduaction is the actual value cf
the factor. For example, 1f the value of the factor is
5, then the simulation applying the VRT can obtain an
estimate 1in 1/5 the simulation time re uired by the
crude simulation for the same precision 1level. Method
#2 may be viewed either as the reduction in simulation
time when both simulations are to achieve the same
variance, or as an 1increase 1n precision when both
simulations are run for the same amount of time. This
method, like Method #1, answers only the first three
questions ©proposed 1in the first section of this

chapter.
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C. THE HYBRID METHOD

Methods #1 and %2 measure increased precision at a
fixed simulation time, or a reduced simulation time at
a fixed 1level of precision. They do not, on the other
hand, measure increased precision at a level of reduced
simulation time, or vice versa; nor do they provide a
means .0 explore such a possibility. In Chapter I we
emphasize that variance reduction may 1increase
precision and reduce simulation time. The efficiency of
a VRT, 1in our opinion, should reflect both effects so
that we can explore the tradeoff of any combination of
precision and simulation time. Method #3 offers such
possibility and answers all four questions 1in the
introduction section of this chapter. It 1is a mixture
of Methods #1 and #2. Method #3 has Kleijnen's idea of
reduction in variance and McGrath and Irving’s use of
relative efficiency. We define the efficlency of a VRT
as a relative efficiency (RE), as shown in Egquation 4,
and later define it 1in terms of 1increased precision

(IP) and reduced time (RT).

Method #2 =

Efficiency, / Efficiencyy (4)

where Efficiencyp and Efficiency, are the efficiencies

of th. crude simulation and simulation applying a VRT
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respectively. The definition af the efficiency of a
simulation, identified by Equation 1, is the inverse of
the product of the sampling variance of the parameter
estimate and the work. Henceforth, we equate work to
simulation time, which 1s +the total time of the
simulation model to obtain a parameter of interest and
a specified variance. Such time may be computed as n
replications times T (average) simulation time per run.
If Kk runs are 1in a replication, then simulation time
equals the product of kn runs and T (average)
simulation time per run. When these variables are

substituted in Equation 1, the efficiency equation

becomes Equation 5:

EFFICIENCY = 1+ / ( Var *» kK # n * T) (%)

If we are to increase the efficiency of a
simulation wusing a VRT, then we must attempt to
decrease one of the parameters 1in Equation 2. The
variable k runs per replication 1s a constant of the
VRT. Specifically, the antithetic variates constant k
is two; stratified sampling constant k is three 1in our
study (it can be more); and for no VRT, the constant
value of k 1s one. The variable T 1is model dependent;:
that 1s, its value depends on the input parameters of

the model. Attempts to decrease this variable may be
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futile; futhermore Bratley, Fox,.and Schrage (1987, p.
48) point out that relatively 1little can be done to
decrease 1t. We discussed the relationship between the
variance (Var) and replications (n) in Chapter I. They
are ,in essence,the variables we wish to decrease.
Throughout this thesls we 1interchange the phrases

decrease in wvariance with 1increased precision and

reduction in replications with reduced time

(simulation). If we substitute Equation 5 into Equation
4, we get Equation 6. Note since T (average) simulation
time per run is the same for both simulations, it is

left out of the equation.

RE = Var@/Var1 * k@/k1 * ng/n1 (6)

If the RE value 1in this equation is greater than
one, then the VRT successfully increases the efficiency
of the simulation and i1s said to be strong;:; otherwise,
it 1s said to be weak. A strong VRT decreases the
varliance so that precision 1s 1increased and simulation
time is reduced. A weak VRT, on the other hand, does
not decrease the variance as well as a strong VRT; in
fact, a very weak (or subversive) VRT may increase the
variance, which causes a reauction 1n precision and
necessitates an increase 1,. stiirulation time. In most

simulation models a VRT may be strong for certain
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-conditions and weak for other. conditions. In this
thesis, we 1look for such characterizations of the
antithetic variates and the stratified sampling in the
stochastic combat model we describe 1in the next
chapter. In the next section, we define Equation(6) in

terms of 1ncreased precision and reduced simulation

time.

D. TRADEOFFS OF GAINING PRECISION AND SAVING TIME

Let us define IP as a decrease in variance,

IP = (Varg - Vary) / Varg (7)

and RT as a reduction in simulation time

RT = (ngkg - njk;) / ngkg. (8)
Then

Vary = (1.0 - IP) * Varg (9)
and

niky = (1.0 - RT) x ngk (10)

If we substitute Equations (9) and (10) into

Equation (6), we get Equation(11).

RE = 1/(1.0 - IP) * 1/(1.0 - RT) (11)
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Equation 11 defines the relative efficiency which
Wé defines as Method #3 of measuring the efficiency of
a VRT, in terms of 1increased precision and reduced
“tlme. Trils equation resolved the unanswered question
identified as (iv) in the introduction section of this
chapter. With this equation, we can examine any
combination ¢f IP and RT. For example, suppose we
measure the efficiency of a VRT to have a RE value of 6
for the same amount of simulation time (Hint: RT=0).
Substituting these values into Equation (11), we get IP
= 5/6 or 83.3% increased precision.

Suppose we only need to increase the precision to
75% instead of 83.3%, then we can substitute the values
for 1IP=3/4 and RE=6 (RE should not <change) 1into
Equation 11. We now get RT=1/3 (Note, we 1increase the
precision 75% and reduce the simulation time 33.3%).
Likewise, with RE=6 for the efficiency of the VRT,
examples of other combinations are (IP=2/3,RT=1/2);
(IP=1/2,RT=2/3); and (IP=0Q,RT=5/6). In fact, we may get
any combination of (IP,RT) between ©@ and 5/6. Note,
however, if we want to increase the precision beyond
83.3% or 5/6, we will get an 1increase 1in simulation
time. That 1s the tradeoff in terms of more increased
precision. For example, we will have +to increase the
simulation time to 2/3 or 66.7% to accommodate an IP of

90% for a RE value of 6. In short, the information
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obtained from method #3 is that we can make an estimate

more precise and save simulaticn time simultaneously.

E. SUMMARY

In the literature, there are generally two methods
of measuring the efficiency of a VRT. Method #1 is a
decrease in the variance; Method #2 1is the relative
efficiency of a simulation wusing VRT to crude
simulation. Both methods may determine if VRT works in
a simulation model. They also may 1indicate the
magnitude of the variance reduction in terms of either
increased precision for a fixed simulation time or
reduced simulation time at a fixed 1level of precision.
In this chapter, we introduced a third method of
measuring the efficiency of a VRT. It 1is a hybrid
between Method #1 and Method #2. Method #3 offers
exploration into the tradeoffs of increasing precision

and saving simulation time for any efficiency value of

a VRT.
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IvVv. SIMULATION OF A STOCHASTIC COMBAT MODEL

A. INTRODUCTION

In the last chapter we discussed how to measure the
efficiency of a VRT to determine how much we may save
in simulation time or/and how much we may increase the
precision of a parameter obtained by crude simulation.
In this chapter we show how we may apply VRTs to the
simulation of a combat system. The combat model which
we have chosen to simulate and to apply the VRTs is the
BCD Markovian model developed in the doctoral
dissertation of Abdul-Latif Rashid Al-Zayani (1986). A
modified version of this model, formulated by
Professor Donald P. Gaver, 1s 1in Appendix A. This
stcchastic model may seem very simple, but 1its
simulation provides 1invaluable insights into the
applicability of VRTs to stochastic combat model.

Beside being stochastic, the BCD Markovian model is
also discrete and dynamic in nature; hence, it 1is a
discrete-event simulation model. We refer those readers
who want to know about the nature of discrete-event
simulations to simulation textbook such as
Morgan(1984), L.+~ and Kelton(1982), or Bratley, Fox,
and Schrage(1987). In this thesis, we describe the

simulation of the BCD model in terms of discrete
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nts. We describe, in detail, the crude simulation of
the BCD model in the next section. In Section C, we
show how we applied antithetic variates and stratified
sampling to this simulation. We summarize the chapter

in the last section.

B. CRUDE SIMULATION OF THE BCD MARKOVIAN MODEL

We discuss the crude simulation of the BCD model in
four parts. First, we describe the combat scenario;
second, we define the characteristics of the model;
third, we explain the simulation of the combat process
in the model; and finally, we discuss a FORTRAN
simulation program written for the model.

1. The Combat Scenario

As part of an air defense command, a wing of
alrcraft detenders is responsible for defendir.g an area
against a hostile air attack from a group of bombers.
When detection of an incoming threat occurs a flight of
D defenders is launched to engage B bombers making the
attack. When the two groups are within aerial combat
range the defenders seek a one-to-one combat engagement
with the bombers at a rate . Only one free defender
can engage a free bomber in combat; a bomber will
generally attempt to avoid any engagement with a
defender. A combat engagement lasts until either the

bomber is killed or the defender is killed. A defender
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kills a bomber at a rate «, and a bomber kills a
defender at a rate ». Hence, at any instant during the
combat process, a defender is either free and searching
to fight a Dbomber, fighting a bomber, or killed. A
bomber 1s, 1likewise, either free and eschewing
engagement with a defender, engaging in combat with a
defender, or killed. The combat process 1s continued
until either force 1is completely killed off or the
duration of the combat pericd 1is terminated after T

units of time.

2. The Characteristics of the BCD Model

Hartman (1985, p. 2-18) characterizes the
structure of a combat simulation model as combat

entities, attributes, and events. We use these

characteristics to simulate the combat process of the
BCD mode? in the next subsection. Combat entities in
the BCD model are free bombers, free defenders, and
combat engagements. Each entity has attributes that
describe a comhat scenario. For the bombers, the
attributes are the number of bombers and the rate a
bomber shoots down a defender; for the defenders, the
number of defenders and the rate a defender shoots down
a bomber; and for the combats, the number of combat
engagements and the rate that a bomber and a defender

engage in combat.
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Law and Kelton (1982, p..4) define an event in
a discrete-event simulation as an occurrence which
changes the state of the system. The BCD model has five
events. The first event 1s the 1initialization of the
air battle. The 1initialization event governs the
initial battle conditions. The next three events, are
the interim events in the combat process. These events
are (1) a combat between a bomber and a defender, (2) a
defender killing a bomber, and (3) a bomber killing a
defender. The occurrence of an interim event changes
the state of the combat process at time t. The state of
the combat process of the BCD model is represented by
the trivariate-Markov process (B(t),C(t),D(t);t>0);
where, B(t) 1is the number of free bombers at time t,
C(t) is the number of combat engagements at time t, and
D(t) is the number of free defenders at time t. As a
Markov process, the combat process moves from state to
state according to one-step transit probabilities that
depend only on the current state. The fifth and last
event in the combat process is the termination of the
air battle. The termination event marifests the "end of
the battle" conditions. The values of the state of the
system at the occurrence of the termination event
reflects the battle outcome. These values are the
numbers of bombers and defenders that are alive at the

end of this air battle. We will consider these values
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as the parameters of interest in.the simulation of the

BCD model.

3. Simulation of the Combat Process

We simulated the combat process by maintaining
a "bookkeeping account" of the changes in the state of
the combat process as the events occur. The process
begins in the initial state (B(t),C(t),D(t):;t=0) with
the initialization event being the commencement of the
air battle. Henceforth, we let a value of B(t) equal b,
a value of C(t) be c, and of D(t) be d. The interim
events change the value of the state of the combat

process as following:

EVENT STATE
New combat b-1,c+1,d4-1
Bomber kills Defender b,c-1,d+1
Defender kills Bomber b+1,c-1,d

The combat process spends X(b,c,d) units of
sojourn time 1in state (b,c,d) until another event
occurs. The sojourn time X(b,c,d) is a random variable

distributed exponentially with mean

P(b,c,d) = 1/(sBD + (o + »)C)
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for the time to the next event in.the combat process of
the air battle, given that at time t the state was
(b,c,.  Equation 12 is this sojourn time. To derive
this expression, we usc¢ the inverse transform method to
obtain unit-mean exponential random variables, where Vj
is the jth random number in the sequence of a stream of
uniform random numbers. The inverse transform method is
discussed 1in the simulation textbooks listed in the

reference section of this thesis.
X(b,c,d) = - P(b,c,d) * ln(Vj) (12)

wWe use the value of Equation 12 to advance the
simulated time of +the air battle as indicated by

Equation 13,

t =1t + X(b,c,d) (13)

The combat process moves to another state when
another event occurs. The probablility of a specific
interim event occurring 1s governed by an embedded

Markov chain whose transition probabilities are as

follows:
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EVENT . PROBABILITY

New Combat tBD * P(b,c,d)
Defender kills Bomber «C * P(b,c,d)
Bomber kills Defender oC * P(b,c,d)

We again use the inverse transform method to
obtain the conditions for an interim event to occur and
to 1induce the change 1in the state of the combat
process. Vj is the jth random number in the sequence of
a different stream of random numbers. These conditions,
events, and changes in the state of the combat process

are listed below.

CONDITION EVENT STATE
VjuBD*P(b.c.d) New Combat b-1,c+1,d+1
VJ>§BD*P(b,c,d) Defender kills Bomber b,c-1,d+1
and

Vj<(;BD+mC)*P(b.c,d)

otherwise Bomber kills Defender b+1,c-1,d

Thus, we (i) generate a uniform random number
to choose which interim event has occurred, (ii) update
the state of the combat process, (1ii) generate another
uniform random number and transform 1t to an
exponential random variable to determine the unit of
time until the occurrence of the next event and to

advance the simulated time of the combat process. We
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repeat this. procedure until the occurrence of the
termination event. The termination event occurs when
(1) ail the bomoers are killed (B(t) + C(t) = @) or all
the defenders are killed (D(t) + C(t) = @) or (2) the
time duration of the air battle has expired (t :T

units of time). At the end of the aerial battle, the
combat process 1is in state (b,c,d). from which we can
compute the number of live bombers B (B(t) + C(t)) and
the number of live defenders D (D(t) + C(t)). These are
values of random variables for one possible battle
outcome.

4. The FORTRAN ES€imulation Program

We coded tne crude simulation of the BCD modz1
in FORTRAN. Tais FORTRAN program, consisting of a main
program and four subroutines, is in Appendix B. The
main program begins in an interactive mode. The program
reads the values for the attributes of a combat
scenario from the terminal and sends them to the BATTLE
subroutine. BATTLE runs N replications of the combat
process and returns the summary statistics of t.
Sutcome of N battles to the main program. The main
program sends them to the STAT subroutine. STAT
analyzes these battle statistics in terms of parameter
estimates and returns the values of these parameter

estimates to the main program. The main program then




..sends these values of parameter estimates to a
formatted output file.

The BATTLE subroutine calls two subroutines
UNIFOR and EXPON for the generation of U(Q,!') random
numbers. These two subroutines implement the

congruential pseuvdo-random number generator

Uy4q = 1680701 mod (2%%31 - 1) (14)

discussed and tested by Lewls and Orav (1985, Ch. V).
UNIFOR generates a sequence of uniform random numbers
for the selection of the occurrence of an interim
event. EXPON generates a sequence of uniform random
numbers for the computation of the unit of sojourn time
in a state.

The STAT subroutine performs statistical output
analysis for the simulation. It computes the means and

variances of the sample distributions of live bombers

and defenders. The sample means for bombers and
defenders
B = SUM By / N (15)
D-sumMmbp, /N (16)

are unbiased (point) estimators of E[(B{(t)] and E[(D(t)]

respectively. Similarly, the variances

41




TYTW rAW TS W Y W W P AW FeW T W TR CE W AR -t T SR - R Rt Wt W T RS e
- v - - T - —— W W o W~ WA W WA W L G A T B e O LW -

i

ﬁ
?
2
5
:
;
g
:
%

VARE = SUM ( By - B)s*2 / N * (N-1) (17)
VARf = SUM ( Dy - D)*#*2 / N x (N-1) (18)
are unbiased estimators of VAR[E[B(t)]] and

VAR{E(D(t)]] respectively (Larson, 1982).

C. PROGRAMMING FOR VARIANCE REDUCTION

In Chapter I, we noted +that VRTs modify the
sampling of random numbers. In this section, we discuss
these modifications for the antithetic variates and
stratified sampling in the simulation of the combat
process. We describe the changes we made to the crude
FORTRAN simulation program for the simulations using
antithetic variates in Secticn 1 and stratified
sampling in Section 2 respectively.

1, Antithetic Variates

We make changes +to0 the subroutines BATTLE,
UNIFOR, and EXPON of the crude simulation program to
use the antithetic variates. The FORTRAN program for
the BCD simulation model applying antithetic variates
is in Appendix C. The BATTLE subroutine computes the
values of the parameters for one replication as the
average values of the battle outcomes from a pair of
runs of the combat process. We obtain the values of the

battle outcome from the first run by using a stream of
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uniform random numbers (U) and those of the second run

by using a stream of complementary random numbers (1-
U). Since we are attempting to decrease the variance of
the estimates by inducing negative correlation between
these two runs, we want to minimize this negative
correlation. We, first, induce a negative correlation
between the two runs by creating monotonicity between
the random numbers and the values of the btattle outcome
within each run. We then minimize +this negative
correlation by synchronizing the sequences of random
numbers (U) and the complement {(1-U) (Bratley, Fox,
Schrage 1987, p.47). Kleijnen (1974, p.187) shows that
a random variable generated by the inverse transform
approach 1s monotonic. Hence we have moncotonicity 1n
the simulation since we wused the inverse transform
method to generate the uniform random variables in the
simulation of the BCD model.

Law and Kelton (1982, p. 352) indicate that the
inverse transform approach also facilitates the
maintenance cf synchronization . With this method, we
use only one uniform random number per segquence to
obtain the desired random variable for each event in
the combat process; as contrasted with other methods,
like the rejection method, where we may use many random
numbers to produce a single value for the desired

random variable of the same events. Thus we initiate
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synchronization in the model when we use the inverse
transform method; nevertheless, we must still preserve
it.

We risk losing this synchronization in the BCD
model because the number of interim events occurring in
the combat process per run is a random variable. Hence
the number of events occurring in the combat process in
the first run may not be the same as the number of
events occurring in the combat process 1n the
antithe.ic run. Consequently, the number of random
numbers needed in the antithetic run generally differs
from that required in the first run. This phenomenon
leads to the random number (Uy) 1in the first run not
being synchronized with the random number (1-03) of the
antithetic run (Kleijnen 1974, p. 193). In other
words, +the complement of the jth uniform random number
(1-UJ) is not wused for the jth event in the combat
process in the antithetic run. We are not able to
control the random number of 1interim events in the
combat process, but we <can manage the way 1in which
UNIFOR and EXPON generate uniform random numbers so
that synchronization is maintained between the pair of
runs per replication.

We used the suggestions of Law and Kelton
(1982, p.352) and Bratley, Fox, and Schrage (1987,

p.47) to maintain the synchronization that the inverse
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transform method has initiated 1in the BCD simulation
model. We modify subroutines UNIFOR AND EXPON to
generate separate streams of random numbers {(U) and
complements (1-U) before simulating a pair of runs of
the combat process. When the subroutine BATTLE calls
UNIFOR and EXPON, 1t receives from each a two-
dimensional array of random numbers, where the first
column contains the stream (U) and the second column
contains the stream (1-U). Hence, we use the first
column for the first run and the second column for the
antithetic run. This approach guarantees that 1f the
jth event in the first run uses (Uj), then the jth
event in the antithetic run will wuse (1-Uy)}. We do
waste some of the random numbers in the arrays, but we
do it judiciously. Since the number of random numbers
used in the combat process is a random variable, we use
only those random numbers that we need in each column
and throw away the remaining so that no overlap 1is
possible for the next pair of runs. As a result, we
maintain synchronization.

The last change we make to the crude simulation
for the wutilization of the antithetic variates is in
the subroutine BATTLE. The subroutine BATTLE computes

the values of parameters for each replication as

follows:
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By = (B'y + B%;) / 2 (19)

B‘i = the number of live bombers from the first run

821 = the number of live bombers from the second run
and
D; = (D'y +D2y) / 2 (20)
where
D11 = the number of live defenders from +the first run
D21 = the number of live defenders from the second run

2. Stratified Sampling

As we stated in Chapter II, stratified sampling
resembles the antithetic variates procedures, and so do
the changes to the c¢rude simulation. Hence we make
changes similar to those 1in the simulation using
antithetic variates for the simulation using stratified
sampling. The FORTRAN program for the BCD simulation
model using stratified sampling 1is in Appendix D. We
modify subroutines UNIFOR and EXPON, where each
generates a three-dimensional array of uniform random

numbers from the three strata
Sy = (0,1/3), S; = (1/3,2/3), Sy = (2/3,1)
before simulating three runs of the combat process per

replication. Note this does not need to be 1limited to

%: we could have done more.
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Gaver and Thompson (1973, p.586) describe this
approach. First, a U(0,1) random number uyq 1is
&enerated and placed in the first row and first column
of the three-dimensional array. Next, 1/3 1is added to
the value of uyy with a subtraction of one if needed to
get uyp within the range of 0 and 1. uyp 1is placed in
the first row and second column of the array. Next, 1/3
is added to the value of u;o, and if necessary
subtracted by one, to get uj;z. uyz is placed in the
first row of the third column of the array. If
subroutine BATTLE calls for k random numbers, then k
U(2,1) random numbers are generated, and the procedure
ovtains a value for each of the kx3 cells. BATTLE uses
the first column of random numbers in the array for the
first run, the second column for the second run, and
the third column for the third run of the combat
process.

The values of the parameters for each
replication are the average values of the Dbattle
outcomes from the three runs. The subroutine BATTLE

computes the values of these parameters as follows:

By = (B'y + B2, + B%;) / 3 (21)

where

B11 = the number of live bombers from the first run
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Bzi = the number of live bombers from the second run

B3, = the number of live bombers from the third run

and
Dy = (D'y + D2y + D3;) / 3 (22)
where
D'y = the number of live defenders from the first run
D21 = the number of live defenders from the second run
D31 = the number of live defenders from the third run

D. SUMMARY

The simulation of the 3CD model is a discrete-event
simulation. It begins with the initialization event and
ends with termination event. The simulation of the
combat process involves generating a sequence of U(0,1)
random numbers to select interim event occurrences with
changes 1in the state of the process and generating
another sequence of U{(@,1) random numbers to determine
the unit of time wuntil the next event occurs and to
advance the simulated time of the combat process.

The programming of the antithetic variates and
stratified sampling modifies crude simulation.
Monotonicity and synchronization are required 1in
generating the uniform numbers for the simulation using
these VRTs. GCenerating random numbers by the 1inverse
transform method guarantees monotonicity. Generating

sufficlent random numbers by the 1inverse transform
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method and 1in multi-dimensional arrays initiates and

maintains synchronization.
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V. APPLICATIONS OF THE ANTITHETIC VARIATES AND
STRATIFIED SAMPLING

A. INTRODUCTION

We are now prepared to demonstrate the application
of the variance reducing techniques to the simulation
of a combat stochastic model. 1In this chapter we
illustrate the performance of the antithetic variates
(AV) and stratified sampling (SS) in the simulation of
the BCD model. In Chapter IV we stated that the mean
and variance of the parameters of interest estimated
from simulation are used to analyze the output data of
the model. Usually the estimated mean is of primary
interest to decision makers, and the estimation of the
variance is secondary. Since we use the variance of the
parameters estimated from the simulation of the BCD
model to exhibit variance reduction, we will,
henceforth, focus on the variance.

We examine the applicability of AV and SS 1in the
BCD model by simulating many scenarios of the alir
battle and recording increases in simulation
efficlency. We investigate AV and SS performance by
mapping a response surface that characterizes the
efficlency of variance reduction 1in the model. In the

next section we specify the scenarios and discuss the
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application of using AV and SS in  the simulation of
these scenarios. We then build response models that
describe the performance of the AV and SS for these
scenarios and discuss their experimental results in
Section C. We present a brief summary of the chapter in

the final section.

B. APPLICABILITY OF ANTITHETIC VARIATES AND STRATIFIED
SAMPLING TO THE BCD SIMULATION MODEL

In Section B of the previous chapter we described
the general scenario of the BCD model. In this section
we specify various combat scenarios to observe how AV
and 8S are applicable to the simulation of the BCD
model. Recall that seven attributes characterize a BCD
scenario. Since a change of the values of one of these
attribute will produce a different scenario, we chose
to change the values for three attributes. We simulated
19, 30 and 50 defenders against 10, 30, and 50 bombers
at "end of Dbattle" times of 25, 75, and 125. We
maintain the o« rate for a defender killing a bomber at
.25, the s rate for a bomber killing a defender at .05,
and the & rate for a bomber and a defender entering a

combat engagement at .005. We also initialize every

simulation with 2zero combat engagements. Thus, we

observe the responses of the simulations at 3 '"end of

battle"” times in 9 different scenarios. This
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arrangement comprises a set. of 27 1independent
simulations.

We run this arrangement for crude simulation,
simulation wusing AV, and simulation wusing SS. As a
result, we perform a total of 81 different simulation
experiments. In order to make a fair assessment of the
applicability of AV and SS, we examine the variance
obtained from the same amount of simulation or the same
numbers of simulated battle runs for every simulation.
We run 90 battles: this equates to 90 replications in
crude simulation, 45 replications 1in simulation using
AV, and 30 replications in simulation using SS. Table
E.1 of Appendix E contains the statistical output for
crude simulation; similarly, data in Tables E.2 and E.4
are from simulations using AV and SS respectively. We
use Equations 6 and 7 to measure the efficiency of the
variance reduction (RE) and the increase 1in precision
of the parameters from the simulation (IP) and place
the AV results i1n Table E.3 and SS results in Table
E.5.

The values 1in Tables E.3 and E.5 show that AV and
SS respectively are applicable 1n the BCD simulation
model. A RE value greater than unity indicates that the
VRT is effective in increasing simulation efficiency. A
positive 1IP value exhibits their effectiveness tc

increase precision of the desired parameter. With these
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two values, we may also find.the tradeoff of saving
simulation time or gaining precision. We acknowledge
that these values are all values of, or realizations
of, random variables, but we believe that the tables
show that the variance reduction adheres to a
stochastic pattern. That 1is, the random variables
obtained under certain scenarios will tend to have the
same relationship to the random variables obtained
under other scenarios. For example, the data in the
tables suggest that high RE and IP values correspond
to the scenarios that start combat with same numbers of
bombers and defenders. The RE and 1IP values obtained
under these scenarios appear consistently aigher than
the values under all other scenarios. Hence, the
variance reduction measured by these RE and IP values

are stochastically greater than the variance reduction

obtained from any other scenario. Since such even
combats (i.e. equal combat power) are inherently more

variable in outcome, the fact that variance reduction

is greatest there is certainly welcome. In the next
section we attempt to conduct a more thorough
investigation of these phenomena so that we may

understand how the AV and SS perform in the simulation

of the BCD model.
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C. FPERFORMANCE OF ANTITHETIC VARIATES AND STRATIFIED
SAMPLING IN THE BCD SIMULATION MODEL

In the previous section we saw that AV and SS are
applicable to the simulation of the BCD model. In this
section we examine the variablility of uncertainty in
the model and then evaluate the applicability of AV and
SS to reduce this uncertainty. We explore the changes
in the AV and SS performance and examine the
relationships of <factors that affect these changes.
Results of this analysis reveal the characterization of
the AV and SS performance in the BCD model.

1. Experimental Design

We use the data we generated in Appendix E to
fit response surfaces that describe the uncertainty in
tiis values of parameters in the BECD model and
characterize the performance of AV and SS over the
prescribed range of values in the three factors:
initial numbers of Bombers and Defenders and "end of

battle” Time. We code the three factors as
xy = (Tiwe - 75) / S0,
Xy = (Defender - 30) / 20,

xz = (Bomber - 30) / 20.

Each factor has 3 1levels. Thus, we may use a 35
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.factorialrdesign to fit the data with the response

surface equation

E(y)= Y7 + 81X + 92)(2 + ﬂ3X3 + B11X1**2

+ 322)’.2*'2 + 633)(3**2 + 12X *Xo

+ 813X *X3 + 833Xp*X7 (20)

vhere
E(y)= expected response
eg= 1lntercept
#1= linear coefficient for factor 1
8{1= quadratic coefficient for factor 1
e;j4= interaction coefficient for the
interaction of factors i and jJ
xy= level of factor 1.
We seek to obtain the maximum information from
every observation; therefore, we chose a 73 Fractional

factorial design. This design is the cuboctahedron plus

three center points (John, 1971). The three center

points provide an unblased estimate of error and
repeated observations which permit us to test for Lack
of Fit of the response surface equation we obtained. We
use the cuboctahedron design to fit data for three
response surfaces: (1) wvariability of uncertainty
inherent in the hattle outcomes, (2) efficiency of AV,

and (3) efficlency of 88. This design, with its three
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center points, and the data to which 1t 1s used to fit
are shown in Tables 5.1, 5.2, and 5.3. The variances
data 1n Table 5.1 1is the variability of uncertainty
inherent in the battle outcome. We obtain this data
from the variance of the estimate tabulated in the
crude simulation table in Appendix E. The RE values
data 1in Table 5.2 1s the efficiency of AV for the
estimation of the defender and bomber parameters. We
took this data from the RE values in Table E.3. In
Table 5.3 is the RE values data for the efficiency of
SS. This data is obtained from the RE values in Table
E.S.

ABLE 5.1 DESIGN AND VARIANCES FOR A 3 x 3 EXPERIMENT
ON THE VARIABILITY OF UNCERTAINTY INHERENT 1IN THE
BATTLE OUTCOME

- e - WP o v i — - ®E Sy T = T - W v v S S e v Er G S S S = T N e S S S S S EE AR e = . . e

DECODED LEVELS CODED LEVELS VARIANCES
Time Defender Bomber xI1 x2 x3 Defender Bomber
25 10 30 -1 -1 ) .0328 .0541
125 10 30 1 -1 0 .0036 .1725
25 50 30 -1 1 1) . 1687 .0826
125 50 30 1 1 ) 3339 2359
25 30 10 -1 ) -1 . 0458 0350
125 30 10 1 7} -1 2247 2045
25 30 50 -1 0 1 0628 1104
125 30 50 1 2 1 0362 3479
75 10 10 () -1 -1 0387 2358
75 S50 10 %) 1 -1 1427 Po63
75 10 50 0 -1 1 0064 .1654
75 S0 50 Q 1 1 2717 .2865
75 30 30 (7] 2 0] 1618 . 1895
75 30 30 0 2 )] 0925 .0966
75 30 30 ) ) ] 1693 1589
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TABLE 5.2 DESIGN AND RE VAI'ES FOR A 3 x 3 EXPERIMENT

ON THE EFFICIENCY OF THE ANTITHETIC VARIATES IN THE BCD
MODEL

i . o —— - — o — v ——— ———— e — —— D ww R Em WY WS W W e e

DECODED LEVELS CODED LEVELS RE VALUES
Time Defender Bomber X1 x2 X3 Defender Bomber
25 10 70 -1 -1 o 2.5 5.4
125 10 >0 1 -1 )} 1.5 3.9
25 50 30 -1 1 ) 6.0 2.2
125 5@ 30 1 1 Q 7.2 1.4
25 30 10 -1 )] -1 3.9 3.0
125 30 10 1 9 -1 4.0 1.5
25 30 50 -1 Q 1 2.8 3.€
129 30 50 1 Q 1 1.8 10.9
75 10 10 Q -1 -1 8.1 6.0
75 50 10 9 1 -1 3.9 1.1
75 10 50 )] -1 1 1.1 4,2
75 50 50 Q 1 1 10.1 9.3
75 30 30 (7} "] ) 6.4 7.0
75 30 30 ) o Q 13.5 7.0
75 30 30 Q ()} Q 10.8 9.2

- e D AR R S S S P P WD e Y G Y D En S A - — - WP e WD WP Eh - e - - — - ——

TABLE 5.3 DESIGN AND RE VALUES FOR A 3 x 3 EXPERIMENT

ON THE EFFICIENCY OF STRATIFIED SAMPLING IN THE BCD
MODEL

DECODED LEVELS CODED LEVELS RE VALUES
Time Defender Bomber x1 X2 x3 Defender Bomber
25 10 30 -1 -1 0 2.6 2.1
125 10 30 1 -1 0} .9 2.2
25 50 30 -1 1 o 3.0 1.9
125 50 30 1 1 Q0 2.2 1.2
25 30 10 - o -1 2.0 2.8
125 30 10 1 ) -1 2.6 1.7
25 30 S0 -1 Q 1 2.9 1.4
125 30 S50 1 Q 1 1.7 2.6
75 10 10 Q ~1 -1 1.6 1.5
75 50 10 Q 1 -1 1.6 1.2
75 10 50 Q@ -1 1 2.0 1.5
75 50 50 0 1 1 3.0 3.3
75 30 30 Q Q Q 3.7 2.7
75 30 30 Q 0 0 2.9 3.0
75 30 3¢ Q ) 2 2.5 1.5
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2. Exrerimental Analysis

To perform the statistical analysis, we use the
Response Surface Regression (RSREG) procedure in the
Statistical Analysis System (SAS) computer software
package on the IBM 370 mainframe. With this procedure
we were able to obtain a second order response-surface
equation by least-square regression, check for model
adequacy, test for lack-of-fit, and identify critical
surface values which were useful in helping to describe
the shape of the surface.

We fitted Equation 20 to the data 1n the
respective design tables 1in the previous section and
obtained multiple response surface equations and
multiple analysis of variance (ANOVA) tables for
corresponding responses. We assess the adequacy of each
equation and test for fit from its corresponding ANOVA
table. From each response surface equation, we
generated additional data to obtain contour plots. We
plotted contours of variability of uncertainty for the
initial numbers of bombers and defenders at various
Times. Similarly, we plotted contours of the
efficiencies of AV and SS for 1initial numbers of
bombers and defenders. From these plot we were able to

see how the 1initial numbers of bombers and defenders 1in
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combat affect the variability. of uncertainty in the
battle outcomes and the AV and SS performance.

a. Varlability of uncertainty of the battle
outcomes

Equation 21 provides an adequate
description of the response surface that characterizes
the variability of uncertain in the expected numbers of
live defenders at the end of the battle 1in the BCD

model. The response Vpegfender 1S the expected amount of

uncertainty in the defender estimate.

Vpefender= -1412 + .036x, + .104xy - .009x3 - .014xy**2
+ .049x1xXp + .008xp**2 - .051x1x3
+ .040xox3 - .034xz**2 (21)

TABLE 5.4 ANOVA FOR THE EXPECTED AMOUNT OF UNCERTAINTY
IN THE DEFENDER ESTIMATE

- . A —— - - - —— - D WD P A WD M M D S G e T T S S - - D e M B = e A A . A - ———

SOURCE d.f SS MS F-RATIO
Fitted Surface S . 1302 .2145 8.06
Lack of Fit 3 .0102 .0034 1.9¢
Pure Error 2 0036 2018

Total 14 1440

—— R e e - D — S W W W D e W S S - - S AR e A G - - S S D AR G e S e v ——

R-Square=.9043 Mean Variance=.1194 Std. Dev.=.052%

We see from ANOVA Table 5.4 that the
variation 1in the variance of 1live defenders 1is
insignificant at the 95% level (its F-Ratio of 8.06 is

less than F gg5;9,2 = 19.38). The Lack of fit is also
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insignificant (F-Ratio= 1.90 < F. g5:3 2 = 19.16). The
R-Square value 1is .9043 which indicates that about 90%
of the variation 1in the variance of the expected number
of 1live defenders 1is accounted for by Equation 21.
Further analysis reveals that the response surface is
shaped like a rising ridge. The plots of contours at
Figure 5.1 illustrate the nature of this Response
surface. These pictures show that initial numbers of
bombers and defenders affect the variance of defenders
at Time 25. At Times 75 and 125 the initial numbers of
bombers have little influence. Here the variance of the
expected number of live defenders is affected solely by
the increase in the number of initial defenders. Hence,
as the number of defenders increases, the variability
of uncertainty in the estimate of the expected number
of live defenders at the end of the battle increases.
Equation 22 provides an adequate
description of the response surface that characterizes
the variability of uncertainty in the expected numbers
of live bombers at the end of the battle in the BCD
model. Vgomper 18 the expected amount of uncertainty in

the Bomber estimate.

VBomber= -1483 + .035xy - .002x; + .104x3 - .031x,%*2
- 041X 1Xp + .032¥%5**2 - .®67X1X3
+ .038xpx3 - .007xz**2 (22)
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the Expected Amount of Uncertainty in the Defender
Estimate
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TABLE 5.5 ANOVA FOR THE EXPECTED AMOUNT OF UNCERTAINTY
IN THE BOMBER ESTIMATE

- - -, oy G T @ WD ED e W = e M P AR D e S e wm W T W G R Gy e R A e e W e e mm e e —

SOURCE d.f SS MS F-RATIO
Fitted Surface 9 . 1331 .2149 6.77
Lack of Fit 3 .0073 .0024 1.08
Pure Error 2 0045 Q022

Total 14 1408

- - P T D D - W D D G L P R D WD MR S v e - - . — D D W W G o - T - W o= -

R-Square=.9188 Mean Variance=.1173 Std. Dev.=.0485

ANOVA Table 5.5 shows that the variation in
the variance of live bombers is insignificant at the
95% level (1its F-Ratio of 6.77 1is less than F gg.q,2 =
19.38). The Lack of fit is also insignificant (F-Ratio=
1.08 ¢ F g5;3,2 = 19.16). The R-Square value indicates
that about 92% of the variation in the variance of live
bombers 1is accounted for by Equation 22. Further
analysis reveals that this response surface 1s also
shaped like a rising ridge. The plots of contours at
Figure 5.2 1illustrate the nature of this response
surface. These figures show that the variance of the
expected number of live bombers generally 1increase as
the initial number of bombers increases.

b. Antithetic Variates.

Equation 23 provides an adequate

description of an AV response surface in the estimation

of the expected numbers of live defenders.
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+ .55x1Xp - 1.68x5%*%2 - .28xX3

+ 3.40XpoX3 - 2.85X3*%2 (23)

We see from ANOVA Table 5.6 that the variation in the
efficiency of AV is insignificant at the 95% level (its
F-Ratio of 1.46 1s 1less than F gg;9,2 = 19.38). The
Lack of fit 1s also 'nsignificant (F-Ratio=.46 <«
F. gs;3,2 = 19.16). The R-Square value 1is .8497 which
indicates that about 85% of the variation 1in the
Defender RE values 1s accounted for by Equation 23.
Here, Apefender 1S the expected simulation efficiency
of AV generated to reduce the uncertainty 1ir <the

Defender estimate.

TABLE 5.6 ANOVA FOR THE EXPECTED EFFICIENCY OF AV (RE
VALUE) GENERATED TO REDUCE THE UNCERTAINTY IN THE
PEFENDER ESTIMATE

SOURCE d.f SS MS F-RATIO
Fitted Surface 9 168.31 18.70 1.46
Lack of Fit 3 4.08 1.36 .47
Pure Error 2 25.69 12.84
Total 14 198.08

——— . D — W D G s D AP D D D - WD T D P L P WP P Eh A S A P S N - AR P TR G e G D - - - — -

R-Square=.8497 Mean RE Value=5.54 Std. Dev.=2.44

Further analysis reveals that the response
surface is shaped 1ike a hill with a gentle slope on
one side and a fairly steep slope on the other side.

The maximum value of this surface occurs in the BCD
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scenario that begins combat with 50 defenders and 4@
bombers and ends the battle at time 7S5. The plots of

contours at Figure 5.3 illustrate the nature of this AV

response surface. These pilctures clearly show how AV
performs in different scenarios for times of 25, 75,
and 125. Beside having 1its best performance 1in a
scenario that ends at time 75, AV appears to be strong
in scenarios that initiate the air battle with at least

30 defenders and 3@ bombers. Its weakest performance

=SS S S Y Y

seems to occur in those scenarios that commence combat !

1
; L
o

gé
1
E

with no more than 3@ defenders and 3@ bombers. The
plots of contours show that the efficiency of AV is
subversive in those scenarios whose simulation
initializes the air battle with 30 or less defenders
and 40 or more bombers. For these scenarios, simulation
efficiency of AV may often increase, instead of
decrease, the uncertainty in the Defender estimate. We
will discuss why this is so in the Experimental Result

Section. Similar analysis of the AV performance 1s made

W for the Bomber RE values. An adequate description of
kl
hg the AV response surface in the estimation of the
53 bombers is characterized by
4
Ao
;.51 Ypomber= 7-73 + .44%; - .69%p + 2.05x3 - 2.45x;%*2
e + .18X1Xp - 2.05x%p%**2 + 2.20x%1X3
>
~%
:ﬁ + 2.5@X2X3 - .53X3'“2 ( 4)
&3
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EFFICIENCY OF AV IN DEFENDER ESTIMATE AT TIME 25
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YBomber 1S the expected simulation efficiency of AV o
reduce the uncertainty in the Bomber estimate. The
ANOVA Table 5.7 indicates that the proportion of the
total variation in the Bomber RE values accounted for
in Equation 24 is over 87%. Furthermore, this variation
is insignificant at the 95% 1level (F-ratio value of

8.19); 1lack of fit 1is also insignificant (F-Ratio=
1.61).

TABLE 5.7 ANOVA FOR THE EXPECTED EFFICIENCY OF AV (RE

VALUE) GENERATED TO REDUCE THE UNCERTAINTY IN THE
BOMBER ESTIMATE

- . - e S D G — D T —— R TR D e Y= - e W W W R R em e . . A e W = e W S T S = e em = e e

SOURCE d.f SS MS F-RATIO
Fitted Surface 9 118.74 13.19 8.1¢
Lack of Fit 3 14.17 4 .72 1.61
Pure Error 2 3.23 1.61

Total 14 136.14

R-Square=.8722 Mean RE Value=5.05 Std. Dev.=1.87

Examining this response surface further we
find that the shape of the surface changes over time.
The plots of contours depicted in Figure 5.4 show that
the shape of the surface looks 1like a saddle at Time
25, a gentle slope at Time 75, and a uniformly rising
ridge at Time 125. The critical values for this surface
also change as its shape changes. Most notable are the

values for maximum efficiency. At Time 25, maximum
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efficiency occurs in scenarios that begin fighting with
less than 20 defenders and bomber. By Time 125, maximum
efficiency has shifted to the scenarics that start
with at least 40 defenders and bombers. The least
amount of AV reduction occurs, at any Time, in those
scenarios that 1initialize +the combat simulation with
more than 30 defenders and less than 10 bombers.

Here 1s a summary of what 1s revealed by
the above analysis. AV, in general, seems to be the

strongest and most consistent, and equally-distributed

between closely-matched pairs of bombers and defenders.

Furthermore, the larger the evenly-matched contest the
greater the variance reduction. When the defenders and
bombers are not evenly matched, AV is not as consistent
and does not provide equal varliance reduction in the
estimation of the pair of parameters. It 1is strong in
the estimation of the larger combatants and weak in the
estimation of the smaller ones.

c. Stratified Samplirng.

We analyze the efficiency of SS 1in the
simulation of the BCD model in a similar manner as we
analyzed the efficiency of AV. If we analyze
Equations 25 and 26 1in terms of ANCVA Tables %.8 and
5.9 respectively, we will get results similar to those
we obtained 1n the 1last section. Therefore, we will

fcrego this particular analysis. Note that Ypefender is
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the expected simulation efficiency of SS to reduce the
uncertainty in the Defender estimate, and Yggmper 1S
the expected simulation efficilency of SS to decrease

the uncertainty in the Bomber estimate.

Ypefender® 3-93 - .39%; + .49%3 + .08x3 - .15x1%**2
+ .22X¢4Xp - .TOxp**2 - .45%x1xX3 + .55XoX73
- .58x3**2 (25)

TABLE 5.8 ANOVA FOR THE EXPECTED EFFICIENCY OF SS (RE
VALUE) GENERATED TO REDUCE THE UNCERTAINTY IN THE
DEFENDER ESTIMATE

SOURCE d.f SS MS F-RATIO
Fitted Surface 9 8.24 .92 2.49
Lack of Fit 3 .53 .18 .47
Pure Error 2 .75 .37
Total 14 9.52
R-Square=.86661 Mean RE Value=2.27 Std. Dev.=.51
YBomber‘ 2.90 - .®6x1 - .@3X2 + .21X3 - .41X1“'2

- 20x3Xp - .64x5%**2 + .58xy1x3 + .50XpoX3

- .36X3“*2 (26)
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TABLE 5.9 ANOVA FOR THE EXPECTED EFFICIENCY OF SS (RE

VALUE) GENERATED TO REDUCE THE UNCERTAINTY 1IN THE
BOMBER ESTIMATE

- e . — ——— A WD W G e WD . T S - —— A S Y WP WD WD R ER e G ER WY S Gm W W SR G e AR TR MR e A = . -

SOURCE d.f SS MS F-RATIO
Fitted Surface 9 5.18 .58 19.33
Lack of Fit 3 1.82 .61 20.33
Pure Error 2 .06 .03
Total 14 7.06

R-Square=.7340 Mean RE Value=2.15 Std. Dev.=.61

The contour plots at Figures 5.5 and 5.6 appear to

have similar features. They show a relatively flat
surface except at the corners. The corner with 50
Bcmbers and 50 Defenders has the highest response and
the other corners have 1low response. These plots
suggest that the SS performance is generally consistent
in all but a few scenarios 1in the BCD model. Maximum
efficiency of SS onccurs 1in those scenarios that
initialize simulation with equally 1large numbers of
bombers and defenders. It 1s very weak 1in those
scenarios that begin combat with either 1less than 10
defenders and more than 40 bombers or more than 40
defenders and less than 10 bombers.

3. Experimental Results

The experimental results can be summarized in
Tables 5.10 and 5.11. Table 5.10 shows the
relationships between the AV performance and the

uncertainty in the Defender estimate and the SS
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EFFICIENCY OF SS IN DEFENDER ESTIMATE AT TIME 25

INITMAL MUMEER OF CETENDERS

L. 29
10 29 30 40 50
INITIAL NUMBER CF BOMEERS

EFFICISNCY CF SS IN DEFENDER ESTIMATE AT TIME 75

INMTAL NUNDER CF DEFENCERS

10 20 30 40 50
INITIAL NUMBER OF BOMBEIRS

EFFICIENCY OF SS IN DEFENDER ESTIMATE AT TIME 125

o 2

W)

INITIAL NUMCER OF DSFUNDERS

10 26 30 40 50
INITIAL NUBER OF BOMBERS

|

Figure 5.5 Contour Plots of the Response Surface
the Expected Efficlency of SS Generated to Reduce
Uncertainty in the Defender estimate
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Figure 5.6 Contour Plots of the Response Surface

the Expected Efficiency of §SS Generated
Uncertainty in the Bomber Estimate
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performance and the wuncertainty in the Defender
estimate. Similarly, Table 5.11 shows the relationships
between the AV performance and the uncertainty in the
Bomber estimate and the SS performance and the
uncertainty in the Bomber estimate.

We further examine this relationship by
analvzing the data that measure the uncertainty (crude
variance) and appropriate variance reduction (RE
Values) in Appendix E. After we applied a logarithmic
transformation to the data, we regress the RE values
on the «crude variance data and observe a strong
logarithmic linear relationship between uncertainty and

variance reduction.

TABLE 5.10 RELATIONSHIP BETWEEN UNCERTAINTY AND THE
EFFICIENCY OF VARIANCE REDUCTION IN THE DEFENDER
ESTIMATE

INITIAL UNCERTAINTY "VARIANCE « DUCTION
Defenders Bombers Variance AV SS
10 10 medium strong_ fair
10 30 medium fair fair
10 50 small weak weak
30 10 large strong fair
30 30 large strong strong
30 50 redium fair falr
50 10 large strong weak
50 30 large strong fair
50 50 large strong fair
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TABLE 5.11 RELATIONSHIP BETWEEN UNCERTAINTY AND THE
EFFICIENCY OF VARIANCE REDUCTION IN THE BOMBER ESTIMATE
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INITIAL UNCERTAINTY VARIANCE REDUCTION
Defenders Bombers Varliance AV SS
10 10 medium strong fair
10 30 large strong fair
10 50 large strong fair
30 10 small falir fair
30 30 large strong falir
30 50 large strong fair
50 19 small weak weak
50 30 medium fair fair
50 50 large strong fair

This relationship is manifested in the
multiplicative equation shown in Table 5.12. VAR 1s the
value of uncertainty or variance of the corresponding
estimate obtained from crude simulation, and Y i{s the
simulation efficiency of the variance reduction or RE

value for the corresponding estimate.

TABLE 5.12 ANALYSIS OF THE RELATIONSHIP BETWEEN
UNCERTAINTY AND EFFICIENCY OF VARIANCE REDUCTION IN
PARAMETER ESTIMATES

CORRELATION SET
VRT ESTIMATE RELATIONSHIP COEFFICIENT POINT
AV Defender Y= 10.43 * VAR#®""® 362 .8609 00154
AV Bomber Y= 9,73 % VAR®* 362 .8217 00186
SS Defender Y= 3.18 * VAR*"*,144 .5601 00032
SS Bomber Y= 2.99 % VAR** 147 .6054 00058

— e e - = e - - - m = . - - = M G m S s Mm e a— e " an a— - e e W e o e . -
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The correlation coefficlient reveals the
strength of the logarithmic linear relationships
between uncertainty and the efficiencies of AV and SS.
wWith the values of the exponent in the equations being
less than one and the values of the correlation
coefficient being positive, the efficiencies of AV and
SS are observed to 1increase, at a decreasing rate, as
the uncertainty (variance) increases. We obtained the
Set Point by setting Y=1 in the corresponding equation
and solving for VAR. At this value, simulation
efficiency nether 1increases nor decreases. Now if we
observe a value of uncertainty, or variance obtained
from crude simulation, above this set point, then we
expected to get an efficiency of a VRT to 1increase the
simulation efficiency. On the other hand, if the value
is below the set point, then we expect the efficiency
of the VRT to decrease the simulation efficlency.

Here is the bottom line on AV and SS

performance in the BCD model:

1. If we apply antithetic variates to the simulation
of the BCD model,

a. We may expect the variabllity of uncertainty
in the defender estimate

(1) to decrease if the variance of the
estimate obtained from crude simulation
is at least .00154, and
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(2) to decrease, at a decreasing rate, with
an increase in the variance of the
estimate obtained from the crude
simulation.

We may expect the variability of uncertainty
in the bomber estimate

(1) to decrease 1if the variance of the
estimate obtained from the crude
simulation is at least .00186, and

(2) to decrease, at a decreasing rate, with
an increase i1in the variance of the
estimate obtained from the crude
simulation.

2. If we apply stratified sampling to the simulation
of the BCD model,

a. We may expect the variability of uncertainty
in the defender estimate
(1) to decrease if the variance of the
estimate obtained from crude simulation
is at least .00032, and
(2) to decrease, at a decreasing rate, with
an increase 1in the variance of the
estimate obtained from the crude
simulation.
b. We may expect the variability of uncertainty
in the bomber estimate
(1) to decrease if the variance of the
estimate obtained from the crude
simulation is at least .00058, and
(2) to decrease, at a decreasing rate, with
an increase in the variance of the
estimate obtained from the crude
simulation.
SUMMARY
We illustrated the performance of the antithetic

variates and stratifizd sampling in the simulation of

the

BCD

model. The manifestation of their pair
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performance was characterized. -by response surface
equations and plots of contour lines. Both VRTs were
shown to Le effective 1in 1increasing simulation
efficiency, but they perform differently in the BCD
model. AV provides the 1largest amount of variance
reduction but 1s more volatile. AV 1increases the
simulation efficlency on the average of 5 times the
crude simulation; it is strong 1n the BCD scenarios
where there 1s large amount o7 uncertainty in the
battle outcomes for 11live bombers and defenders, znd
weak in those scenarios where there is little amount of
uncertainty in the battle outcomes. SS, on the hand,
has a more consistent performance. SS increases the
simulation efficiency at a mean of 2 times the crude
simulation. It performs near.y the same 1in every

scenario except where the uncertainty is large.
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VI. CONCLUSIONS AND RECOMMENDATIONS

A. CONCLUSIONS

The objective of this pilot study has been to
investigate the applicability of VRTs to reduce the
inherent variability in stochastic combat models. We
examined <*the effects of applying AV and SS to the
simulation of a simple stochastic combat model. We have
now shown that AV and SS are applicable tc this
stochastic combat model. We can infer that these VRTs
are 1ndeed capable of working 1in steochastic combat
models, 3nd their prospects in larger and more complex
stochastic combat models are even more promising. The
conditions of monotoniclty and synchronization are
essential parts of the design of the simulation program
for these models. Hence, we feel that sizable increase
in simulation efficliency is possible 1f these
requirements are met in the simulation.

The experimental results of applying VRTs to the
BCD simulation model show that the strength of AV and
SS is 1influenced by uncertainty. A strong variance
reduction results from a large variance of the estimate
obtained from zcrude simulation. A weak variance
reduction 1is caused from a small variance of the

estimate obtained from crude simulation. Hence, sizable
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and consistent variance reduction depends on large
variability of the simulated output from the stochastic
combat model. Therefore, the variability of the output
from larger and more complex stochastic models must
also be large enough to obtain the size and consistency
of simulation efficiency and wvariance reduction one

desires from the applications of these VRTs to such

models.

B. RECOMMENDATIONS

The pilot study presented in this thesis provides
a base for further studies in the applications of AV
and SS to large-scale, real world, stochastic combat
simulation models. Usually complex simulation models
have many subroutines or modules. The variability of
uncertainty in the output data from these modules may
vary from 1low to high. We recommend that a study of
this matter focus on the degree of variability of
uncertainty in the output data from each module. The

interest of the study should be concerned with the

relationship between thLe performance of the VRT and the
variability of the output data from each module. The
results should indicate whz2re and how the VRT may be
used in the model in order to maximize the simulation
efficiency of the model. For example, if the study

shows that a VRT perfo-ms strongly in a particular
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module whose variability of output data is large and it
performs poorly 1in another module whose variability of
output 1is small, then the study shouid recommend that
the VRT be used in the module in which it performs best
and not be used 1in that module for which it performs
poorly. Using VRTs in the module with small wvariability
would most likely decrease simulation efficiency for

that model and, at worst, suboptimize the overall

performance of the VRT in the complex combat model.




APPENDIX A

FORMULATION OF THE BCD MARKOVIAN MODEL

by
Pr fessor Donald P. Gaver

Nz al Postgraduate School
Monterey, California

B bombers are approaching a group of D defenders.
When the two groups approach within range each defender

searches for a bomber; after he finds one they engage

in combat. Either bomber or defender may win the
combat; the survivor becomes "free", and is a candidate
for the next combat. In general, bombers attempt to

avoic¢ combat, defenders seek it out.

This situation becomes a tri-variate Markov chaln
1f the following state 1s defined: (B(t),C(t),D(t)}.
Here t 1s conveniently measured from the time bombers

and defenders are cloase enough to permit combat at all,

R(t) 1is the number of free bombers at *ime t
thereafter; ditto for D(t), the number of free
defenders; c(t) i{s the number of one-on-one combats.

Here are a set of transition rates:

(1) Combats bepgin. If B(t)=b, C(t)=c, D(t)=d and 1if

is the rate at which free bombers are found by

free def~nders then with probability
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((e#t)b)d = 1 - sbdt + o(t)

no defender finds a bomber in time t. Hence the
probability that a defender does find a bomber is
ibdt + o(t). This is the rate at which free
bombers and defenders get converted to combats:

the state

(b, ¢, d) » (b-1, c+1, d-1) with prob ibdt.

(2) Defenders win. Same initial conditions. If a

bomber is in combat with a defender the
probability that a defender shoots down the
bomber in time t (combat duration) 1f the latter

doesn't hit the defender 1is

P(Combat duration ¢ t ! bomber doesn’'t hit)

= 1 - et

e R, spreeges SJnWisSSINE-oR sl o aestiwme o a e Lo i st i R o s

Likewise, the probability that the bomber shoots

L%

down the defender 1is

P(Comtat duration ¢ t | defender doesn't shoot)

=1 - et
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Now suppose they both shoot, doing so

independently. Model the probability that both

survive to t as

P(Combat duration > t) = (e~°t)(e~*t).

Now the probability that combat lasts until t and
1s terminated by a defender shooting down the

bomber 1is

P{(Combat ends is (dt), Defender wins)

(e~tedt )e—tt

(e=Ca + 0)t(4 & 4))(a/(ass).

This shows that a single combat duration is
exp(e + #) and the event of a defender's winning
is independently o/(a + »). Likewise, the combat
duration is exp(« + s) and a bomber's win is,
independently, s/( + s). If there are c combats
going on then the first combat to ends does so
in time exp(c(a + »)).
Hence

(L, ¢, d) + (b, c-1, d+1) with prob acdt

(b, ¢, d) » (b+:,c-1, d) with prob cdt.
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(3) Simulation and Sojourn. The above shows that we
7 may simulate the combat as follows.

(1) You are in state (b, ¢, d). Obtain a

sojourn time in that state that is
exp(ibd + (« + 8)c)

i.e. Speqg = 1 / (ibd + (a + »)c).
The system stays in state (b,c,d) for
time [0,Spcq)-

(ii) With probability

tbd / (sbd + (¢ + e)c) » (b-1, c+1, d4d-1)

(NEW COMBAT) at time Sde'

(i1i1) With probability
ec / (bd + (a + 8)c) » (b, c=-1, d+1)
( DEFENDER SHOOTS DOWN BOMBER) at
time Sbcd'

(iv) With probability

ec / (sbd + (o + 2)c) » (b+1,c-1,d)

( BOMBER SHOOTS DOWN DEFENDER) at
time Sbcd-




APPENDIX B

FORTRAN PROGRAM LISTING FOR THE CRUDE SIMULATION
OF THE BCD MODEL

DIMENSION BX(101),DX(101),SEED(2),B0X(2),D0OX(2)
INTEGER I,N,BB,DD,R

REAL*4 X,Y,Z,BX,DX,TXT,BOX,DOX

DOUBLE PRECISION SEED

DATA SEED /1234.0D0,567890123.0D0/

R= 2

N=100

RECEIVE INPUT DATA FROM TERMINAL

aQaaa

WRITE(*,3)
3 FORMAT(1X,.'ENTER THE NUMBER OF BOMBERS')
READ °'(I2)', BB
WRITE(*,4)
4 FORMAT(1X, 'ENTER THE RATE WHICH A BOMBER SHOOTS
DOWN A DEFENDER')
. READ '(F5.3)', Y
i WRITE(*,5)
! 5 FORMAT(1X,'ENTER THE NUMBER OF DEFENDERS')
READ '(I2)', DD
WRITE(*,6)
6 FORMAT(1X,’'ENTER THE RATE WHICH A DEFENDER'
& 'SHOOTS DOWN A BOMBER'’)
READ '(F5.3)', X
WRITE(*,7)'ENTER THE RATE WHICH FREE DEFENDERS'’
& 'FIND FREE BOMBERS'
7 FORMAT(1X,A)
READ '(F5.3)', 2
WRITE(*,8)'ENTER THE TIME DURATION OF THE
& 'BATTLE’

)
)
! 8 FCRMAT(1X,A)
{ READ '(F5.3)', TXT
: c
a C  RUN REPLICATIONS OF N BATTLES AND OBTAIN SUMMARY OF
{ C N BATTLES
. C
! CALL BATTLE(N,R,SEED,X,Y,Z,BB,DD,TXT,BX,DX)
, c
: C COMPUTE STATISTICAL OUTPUT ANALYSIS OBTAIN PARAMETER
' c ESTIMATES
! C
: CALL STAT(N,R,BX,DX,BOX,DOX)
C
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R C FORMAT AND PRINT OUTPUT OF PARAMETER ESTIMATES
& WRITE(3,279) N
i 279 FO?MAT(lSX,’SAMPLE SIZE',I6,/15X,6("-"'),1X,
) & 4(’'-'))
‘ WRITE(3,280) BB,DD
280 FORMAT(//1X,I4,2X,'BOMBERS’,6X,'VERSUS’,6X,
& 14,2X, 'DEFENDERS’',/1X,13('-'),18X,14('-"))
290 WRITE (3,300)TXT
. 300 FORMAT(//18X,'TIME’ ,F6.1,/,47(’="))
WRITE(2,310)
310 FORMAT(19X, 'BOMBER’,2X, 'DEFENDER’,/18X,
& 7('='),2X,8('="))
WRITE(3,320) BOX(1),DOX(1)
320 FORMAT(1X, 'AVERAGE'’,7X,2F10.4)
WRITE(3,330) BOX(2),D0X(2)
330 FORMAT(1X,'VARIANCE',6X,2F10.4)

s’

-

.

. STOP

L END

‘.: C

-~ C

b C SUBROUTINE BATTLE

N C

SUBROUTINE

e & BATTLE(N,R,SEED,X,Y,Z,BB,DD,TXT,BX,DX)
o INTEGER BB,DD,I,K,N,R

& REAL X(N+1),DX(N+1),GA,SoJ,X,Y,Z,B,C,D,NC,
% & BW,DW,INF,T,TIME,TXT

" DOUBLE PRECISION SEED(R)

‘ c

ke C INITIALIZE STATISTICAL COUNTERS
] C

5 BX(N+1)= 0.0

} DX(N+1)= 0.0

3 C

C RUN N REPLICATIONS

,,, c

3 DO 200 I=1,N

o c

2 C INITIALIZE START-TO-BATTLE VALUES
“~ C

° T=0.0

I C=0.0

v B=REAL(BB)

) D=REAL(DD)

W, BwW= 0.0

o DW= 0.0

@ NC= 1.0
o C

2 C OBSERVE OCCURRENCE OF AN EVENT
:' C

v,
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100 CALL UNIFOR(SEED(1),GA,1)

DETERMI?E NEXT INTERIM EVENT AND UPDATE THE STATE
(B,C,D

IF(GA .LE. BW' THEN
1.2
1.

o
+

=
t
vaowhoaoawnouaw

.LE. (BW+NC)) THEN

(]
t

Wontte o o8 tsiuonon

HUOOQwW YQw Ua

td
r
v

COMPUTE MEAN TIME IN STATE (B,C,D)
IF ((B .EQ. 2.9 .OR. D .EQ. 0.0) .AND. C
& .EQ. 2.0) THEN

INF= 1000000.0
ELSE

INF= 1.0/(Z*D*B + (X + Y)*C)
END IF
GENERATE SOJOURN TIME IN STATE {(B,C,D)

CALL EXPON,:G «<ED(2),S0J,1)
TIME= -INF ALOG(S0J)

ADVANCE THE SIMULATED TIME OF THE AIR BATTLE
T= T + TIME
COMPUTE PROBABILITY OF NEXT INTERIM EVENTS OCCURRING
BwW= Y#C#*INF
Dw= X*C*INF
NC= Z*B*D*INF

CHECK CONDITIONS FOR OCCURRENCE OF TERMINATION EVENT

IF (T .LT. TXT) GOTO 100

ACCUMULATE SUMMARY OF N BATTLE OUTCOMES
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BX(I)= B + C
DX(I)= D + C
BX(N+1)= BX(N+1) + BX(Il)
DX(N+1)= DX(N+1) + DX(I)
CONTINUE
RETURN
END

SUBROUTINE EXPON

SUBROUTINE EXPON(SEED2,A2,K)
INTEGER 1I,K

REAL STIM, A2, INF

DOUBLE PRECISION EFF,SEED2

EFF= 2147483647.0D0
SEED2=DMOD( 16807 .0D® * SEED2,EFF)
A2= SEEDZ2/EFF

RETURN

END

SUBROUTINE UNIFOR

SUBROUTINE UNIFOR(SEED1,A1,K)
INTEGER I,K

REAL A1

DOUBLE PRECISION EFF,SEED

EFF= 2147483647.0D0
SEED1=DMOD( 16807 .0D@ * SEED1,EFF)
Al1= SEED1/EFF

RETURN

END

SUBROUTINE STAT

SUBROUTINE STAT(N,R,BX,DX,BOX,DOX)
INTEGER J,R,N
REAL BX(N+1),DX(N+1),BOX(R),DOX(R)
BOX(2)= 0.0
DOX(2)= 0.0

COMPUTE THE ESTIMATES OF THE SAMPLE MEAN AND
YARIANCE

BOX(1) = BX(N+1)/N
DOX(1) = DX(N+1)/N
DO 260 I=1,N
BOX(2)= BOX(2) + (BX(I)-BOX(1))**2
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DOX(2)= DOX(2) + (DX(I)-DOX(1))*»2
260 CONTINUE '
: BOX(2)= BOX(2)/(N*(N-1))
v DOX(2)= DOX(2)/(N*(N-1))
. RETURN
o END
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APPENDIX C

FORTRAN PROGRAM LISTING OF THE BCD SIMULAT1CN
USING ANTITHETIC VARIATES

DIMENSION BX(1@1),DX(101),SEED(2),B0X(2),D0X(2)
i INTEGER I,N,BB,DD.R

REAL*4 X,Y,Z,BX,DX,TXT.BOX,DOX
DOUBLE PRECISION SEED
DATA SEED /1234.0D0,567890123.0D0/

R= 2
N=50
C
C RECEIVE INPUT DATA FROM TERMINAL
C
WRITE(*,3)
3 FORMAT(1X,'ENTER THE NUMBER OF BOMBERS')
READ '(I2)’', BB
WRITE(*,4)
4 FORMAT(1X, 'ENTER THE RATE WHICH A BOMBER SHOOTS®
& 'DOWN A DEFENDER')
READ '(F5.5)'. Y
WRITE(*,S)
5 FORMAT(1X, ENTER THE NUMBER OF DEFENDERS’)
READ '(12)', DD
WRITE(*,6)
6 FORMAT(1X,’ENTER THE RATE WHICH A DEFENDER

& SHOOTS DOWN A BOMBER')
READ '(F5.3)', X
WRITE(*,7)’ ENTER THE RATE WHICH FREE DZFENDERS®
& 'FIND FREE BOMBERS’
7 FORMAT(1X,A)
READ '(F5.3)', Z
WRITE(*,8)'ENTER THE TIME DURATION OF THE’
& 'BATTLE'

8 FORMAT(1X,A)
READ '(F5.3)’', TXT
Cc
c RUN REPLICATIONS OF N BATTLES AND OBTAIN SUMMARY OF
C N BATTLES
c
CALL BATTLE(N,R,SEED,X,Y,%,BB,DD,TXT,BX,DX)
Cc
C COMPUTE STATISTICAL OUTPUT ANALYSIS OBTAIN PARAMETER
C ESTIMATES
c
CALL STAT(N,R,BX,DX,B0X,DOX)
Cc
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C FORMAT AND PRINT OUTPUT OF PARAMETER ESTIMATES

C
WRITE(3,279) N
279 FORMAT( 15X, 'SAMPLE SIZ2E’',I16,/15X,6('-'),
& 1X,4('-'))
WRITE(3,280) BB,DD
280 FORMAT(//1X,14,2X, 'BOMBERS’,6X, 'VERSUS’,
& 6X,I14,2X,'DEFENDERS’,/1X,13('-"),18X,14("'-"))
290 WRITE (3,300)TXT
300 FORMAT(//18X,’'TIME' ,F6.1,/,47('~"))
WRITE(3,310)
310 FORMAT( 19X, 'BOMBER' ,2X, 'DEFENDER',
& /18X,7('="),2X,8('="))
WRITE(3,322) BOX(1),DOX(1)
320 FORMAT(1X, 'AVERAGE' ,7X,2F10.4)
WRITE(3,330) BOX(2),DO .¢ )
330 FORMAT(1X, 'VARIANCE’ ,6. _.F10.4)

STOP
) END
{ c
- c
? C  SUBROUTINE BATTLE
C
Y SUBROUTINE
%ﬁ & BATTLE(N,R,SEED,X,Y,Z,BB,DD,TXT,BX,DX)
v INTEGER BB,DD,H,I.J,W,K,N,R
VA REAL GA(2,1000),S0J(2,1000),BX(N+1),
0} & DX(N+1),BAT(50,2),DAT(50,2),
& X,Y,2,T,TXT,TIME, INF,NC,BW,DW,B,C,D

DOUBLE PRECISION SEED(R)

K= 1000
@ C
X C INITIALIZE STATISTICAL COUNTERS
» c

BX(N+1)= 0.0

DX(N+1)= 9.0
: o
% C RUN N REPLICATIONS

c
E DO 200 I=1,N
CALL SOJOUR(SEED(1),S0J,R,X)

g CALL STATE(SEED(2),GA,R,K)
N DO 175 J=1,R
\'_ o)
“ o] INITIALIZE START-TO-BATTLE VALUES
N c
. H=0
! T=0.0Q
* C=0.0
N B=REAL(BB)
‘ D=REAL(DD)

L]
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Bw= 0.0
DW= 0.0
NC= 1.0
C
C OBSERVE OCCURRENCE OF NEXT EVENT
C
100 H=H+1
C
C DETERMINE NEXT INTERIM EVENT AND UPDATE THE STATE
¢ (B,C,D)
C
IF(GA(J,H) .LE. BW) THEN
B=B + 1.0
c=C - 1.0
D=D
ELSE IF (GA(J,H) .LE. (BW+NC)) THEN
B=B - 1.0
C=C + 1.0
D=D - 1.0
ELSE
B=B
C=C - 1.0
D=D + 1.0
END IF
C
C COMPUTE MEAN TIME IN STATE (B,C,D)
C
IF ((B .EQ. 9.0 .OR. D .EQ. 0.2) .AND. C
& .EQ. 90.0) THEN
INF= 1000000.0
ELSE
INF= 1.0/(Z*D*B + (X + Y)*C)
END IF
; C
C COMPUTE SOJOURN TIME IN STATE (B,C,D)
C
) TIME= -INF * ALOG(SOJ(J,H))
! C
s C ADVANCE THE SIMULATED TIME OF THE AIR BATTLE
\ C
! T= T + TIME
. C
3 C COMPUTE PROBABILITY OF NEXT INTERIM EVINTS OCCURRING
C

BW= Y*Cx*INF
DW= X*C*INF
NC= Z*B*D*INF

- - e Fwtee e 8 W

CHECK FOR OCCURRENCE OF TERMINATION EVENT

C
C
C




IF (T .LT. TXT) GOTO 100

C
C RECORD RESULTS OF BATTLE
C
BAT(I,J)= B + C
DAT(I,J)= D + C
175 CONTINUE
c
c ACCUMULATE SUMMARY OF N BATTLE OUTCOMES
C
BX(I)=(BAT(I,?') + BAT(I,2))*.5
DX(I)=(DAT(I,1) + DAT(I,2))*.5
BX(N+1)= BX(N+1) + BX(I,J)
DX(N+1)= DX(N+1) + DX(I,J)

200 CONTINUE

RETURN
END
C
C
C  SUBROUTINE SOJOUR
C
SUBROUTINE SOJOUR(SEED2,A2,W,K)
INTEGER I,W,K
REAL A2(W,K)
DOUBLE PRECISION EFF,SEED2
EFF= 2147483647.0D0
DO 10 I=1,K
SEED2=DMOD( 168¢7.9Dd * SEED2,EFF)
A2(1,1)= SEED2/EFF
A2(2,I)= 1.0 - A2(1,1)
10 CONTINUE
RETURN
END
C
C
C  SUBROUTINE STATE
C
SUBROUTINE STATE(SEED1,A1,W,K)
INTEGER I,K,W
REAL A1(W,K)
DOUBLE PRECISION EFF,SEED1
EFF= 2147483647.0D0 j
DO 10 Ia1,K
SEED1=DMOD( 16807 .0D0 * SEED1,EFF)
A1(!,I)= SEED!/EFF
A1(2,I)= 1.0 - A1(1,1)
10 CONTINUE
RETURN
END
C
C
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C SUBROUTINE STAT

SUBROUTINE STAT(N,R,BX,DX,BOX,DOX)
INTEGER J,R,N

REAL BX(N+1),DX(N+1),BOX(R),DOX(R)
, BOX(2)= 0.0
DOX(2)= 0.0

COMPUTE THE ESTIMATES OF THE SAMPLE MEAN AND
VARIANCE

aQaaoaQ

BOX(1)
DOX(1)
DO 260
BOX(
DOX(
260 CONTINUE
BOX(2)= BOX(
DOX(2)= DOX(
RETURN
END

DN HH 0N

WX @RI A IS

x
,'

v

ML JSTL Ll 5 \ o bR s

VAL

) @B

To T

. - w
oo . R ek &y _‘.T':".l‘ﬁ“,’

L]




C
C
C

N

hl

acaa

aaaaqQ Q

FORTRAN PROGRAM LISTING OF THE BCD SIMULATION USING

APPENDIX D

STRATIFIED SAMPLING

DIMENSION BX(101),DX(101),SEED(2),B0X(2),D0X(2)
INTEGER I,N,BB,DD,R

REAL*4 X,Y,Z,BX,DX,TXT,BOX,DOX

DOUBLE PRECISION SEED

DATA SEED /1234.0D0,567890123.0D0/

R= 2

N=100

RECEIVE INPUT DATA FROM TERMINAL

WRITE(*,3)
FORMAT(1X,'ENTER THE NUMBER OF BOMBERS')
READ '(I2)', BB
WRITE(*,4)
FOR™..i\ A, 'ENTER THE RATE WHICH A BOMBER SHOOTS'
'DOWN A DEFENDER' )
READ '(FS5.3)', Y
WRITE(*,5)
FORMAT(1X, 'ENTER THE NUMBER OF DEFENDERS')
READ '(I2)', DD
WRITE(*,6)
FORMAT( 1%, 'ENTER THE RATE WHICH A DEFENDER’
'SEFOOTS DOWN A BOMBER')
READ '(F5.3)', X
WRITE(*,7)'ENTER THE RATE WHICH FREE DEFENDERS'
'FIND FREE BOMBERS'
FORMAT(1X,A)
READ '(F5%.3)', Z
WRITE(*,8)’ENTER THE TIME DURATION OF THE'
' BATTLE’
FORMAT(1X,A)
READ ’'(F5.3)', TXT

RUN REPLICATIONS OF N BATTLES AND OBTAIN SUMMARY OF
N BATTLES

CALL BATTLE(N,R,SEED,X,Y,Z,BB,DD,TXT,BX,DX)

COMPUTE STATISTICAL OUTPUT ANALYSIS OBTAIN PARAMETER
ESTIMATES

CALL STAT(N,R,BX,DX,BOX,DOX)
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C

C FORMAT AND PRINT OUTPUT OF PARAMETER ESTIMATES
c

aaoaa

Qo

aaaQ

279

280

290

300

310

320

330

R &

WRITE(3,279) N

FORMAT(1?§,’SAMPLE SIZE',16,/15X,6('-"),
1X,4( " "
WRITE(3,280) BB,DD

& FORMAT(//1X,I14,2X,'BOMBERS’,6X,'VERSUS',

6X,I4,2X, 'DEFENDERS’,
/1Xv13(,-,)118xv14(’_’))

WRITE (3,300)TXT
FORMAT(//18X,'TIME® ,F6.1,/,47('="))
WRITE(3,310)

FORMAT( 19X, 'BOMBER', 2X, 'DEFENDER’,
/18X,7('='),2X,8('="))
WRITE(3,320) BOX(1),DOX(1)
FORMAT(1X,'AVERAGE',7X,2F10.4)
WRITE(3,330) BOX(2),D0X(2)
FORMAT(1X,'VARIANCE’ ,6X,2F10.4)
STOP
END

SUBRCUTINE BATTLE

SUBROUTINE
BATTLE(N,R,SEED,X,Y,Z,BB,DD,TXT, BX,DX)
INTEGER BB,DD,H,I,J,K,N,R,V¥W

REAL GA(3,1000),S0J(3,1000),BM(34,3),
DF(3%4,3),BX(N+1),DX(N+1),X,Y,2,T,TXT,TIME,
INF,NC,BW,DW,B,C,D,BM,DF

I'MUBLE PRECISION SEED(R)

K= 1000

W= 3

INITIALIZE STATISTICAL COUNTERS

BX(N+1)= 0.0
DX(N+1)= 0.0

RUN N REPLICATIONS

DO 200 1Is1,N
CALL SOJOUR(SEED(1),S0J,W,K)
CALL STATE(SEED(2),GA,W,K)
DO 175 J=1,W

INITIALIZE START-TO-BATTLE VALUES

H=0
T=0.0
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;
|
s
]
1
;
;

C=0.0
BsREAL(BB)
D=REAL(DD)
NC= 1.0
Bw= 0.0
Dw= 0.0

OBSERVE AN OCCURRENCE OF AN EVENT
100 H=H+1

DETERMINE NEXT INTERIM EVENT AND UPDATE THE STATE
(B,C,D)

QOO0 Qa0

IF(GA(J,H) .LE. BW) THEN
B=B + 1.0
Cs=C - 1.
DaD
ELSE IF
B=B
C=C
D=D
ELSE
B=B
CaC - 1.0
DaD+ 1.0
END IF

r+ 1
— b b S~

o
GA(J,H) .LE. (BW+NC)) THEN
.9
.0
.0

COMPUTE MEAN TIME IN STATE (B,C,D)

aaaq

IF((B .EQ. 0.9 .OR. D .EQ. ©2.0).AND. C
& .EQ. 0.0) THEN
INF= 1000000.0
ELSE
INF= 1.0/(Z*B*D + (X+Y)*C)
END IF
COMPUTE SOJOURN TIME OF STATE (B,C,D)
TIME= -INF * ALOG(S0J(J,H))
ADVANCE SIMUILLATED TIME CF THE AIR BATTLE
T= T + TIME

COMPUTE PROBABILITY OF NEXT INTERIM EVENTS OCCURRING

QO Qa oo aQQ

NC= Z*B*D*INF
BwWa Y*C*INF
DW= X*C#*INF
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CHECK FOR OCCURRENCE OF TERMINATION EVENT
IF (T .LT. TXT(TI)) GOTO 10@
RECORD RESULTS OF BATTLE

BM(I,J)= B + C
DF(I,J)= D + C
175 CONTINUE
C ACCUMULATE SUMMARY OF N BATTLE OUTCOMES
C
BM(I,1) + BM(I,2) + BM(I,3)/3.0
DF(I,1) + DF(I,2) + BM(I,3) ..0
BX(N+1) + BX(I)
DX(N+1) + DX(I)

200 CONTINUE
RETURN
END

SUBROUTINE SOJOUR

SUBROUTINE SOJOUR(SEED2,B2,W,K)
INTEGER I,W,K,J
REAL B2(W,K),A2
DOUBLE PRECISION EKFF,SEED2
EFF= 2147483617.0D0
DO 10 I=1,K
SEED2=DMOD( 16807 .0D@ * SEED2,EFF)
A2= SEEDZ2/EFF
DO 5 J=1,¥
B2(J,I)= AMOD(A2 + ((J-1) * 1.0)/3.0,1.0) ;
5 CONTINUE
10 CONTINUE
RETURN
END

[ L u%eTame e, @Wgpdas -+, - SFemeo e b e sl e e e
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SUBROUTINE STATE

oNONON®

SUBROUTINE STATE(SEED1,A1,W,K)

INTEGER I,K,W,J

REAL A1(W,X),A2

DOUBLE PRECISION EFF,SEED?

EFF= 2147483647.0D0

. DO 10 I=',K

SEED1=DMOD( 168027.0DQ * SEED1,EFF)
A2= SEED1/EFF
DO 5 J=1,W
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260

A1(J,I)= AMOD(A2 + ((J 1) »* 1.0)/3.0,1
CONTINUE ' '
RETURN
END

SUBROUTINE STAT

SUBROUTINE STAT(N,R,BX,DX,BOX,DOX)
INTEGER R,N
REAL BX(N+1),DX(N+1),BOX(R),DOX(R)
BOX(2)= 0.0
DOX(2)= 0.0

COMPUTE THE ESTIMATES OF THE SAMPLE MEAN AND
ARIANCE

BOX(1) = BX(N+1)/N
DOX(1) = DX(N+1)
DO 260 I=1,N
BOX(2)= BOX(2
DOX(2)= DOX(2
CONTINUE
BOX(2)= BOX(2)/(N 1)
DOX(2)= DOX(2)/(N 1)
RETURN
END

N \\
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APPENDIX E

STATISTICAL OUTPUT DATA FROM THE BCD SIMULATIONS

TABLE E.1 OUTPUT PARAMETERS OF THE BCD MODEL ESTIMATED
FROM CRUDE SIMULATION

- —— - o — . - - - WD M R P T WD WD — ww ED n e S G R en R G en e TR D MR D e ws e W S G W e W -
- — - D v - = — - —m - - — -

e v — e - S o P T e S e . W e T MR D R P D S G MR L S b M D WD w— - W WS W . s o — em -

1 10 10 25 7.6 .0191 7.5 .0252
2 10 10 75 4.4 .0387 4.5 .0358
3 10 10 125 2.8 .0375 3.4 .0417
4 10 30 25 5.3 .0328 25.1 .0541
5 10 30 75 1.3 .0157 21.3 .1402
6 10 30 125 .3 .0036 20.8 .1725
7 10 50 25 4.2 .0251 44.7 .0558
8 10 50 75 .6 .0064 40.8 .1654
9 10 50 125 .1 .0014 39.7 .1874 J
10 30 10 25 25.1 .0458 5.4 .03%0 ?
11 30 10 75 21.1 L1407 1.4 .0141
12 30 10 125 19.8 .2247 .4 .0045
13 30 30 25 18.7 .0933 18.5 .0842
: 14 30 30 75 8.2 .1618 8.4 .1895
15 30 30 125 .7 .1984 4.7 .1341
16 30 50 25 14.4 .0628 34.5 .1104
17 30 50 75 3.4 .0362 22.9 .3479
18 30 50 125 .9 .0136 20.1 .4881
19 50 10 25 44.4 0651 4.1 .0317
20 50 10 75 40.7 .1427 .7 .0063
21 50 10 125 41.1 .1666 .1 .0014
: 22 50 30 25 34.3 .1687 14.0 .0826
23 50 30 75 23.5 .3339 3.1 .0359
24 50 30 125 21.1 .5300 .8 .0107
4 25 50 50 25 27.9 .1590 26.4 .150!
o, 26 50 50 75 9.5 .2717 11.5 .2865
= 27 50 50 125 5.2 .2126 7.9 .2986
§
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TABLE E.2 OUTPUT PARAMETERS OF THE BCD MODEL ESTIMATED
- FROM THE SIMULATION USING ANTITHETIC VARIATES :

" Em e D O wm e TR R R G =t TR WD W ey I GR DGR YD WD D WD Gh G SR T WD TR W D TE M N D GE WD TR D T YE AR TR Tm M W W e - A e

1 10 10 25 7.6 .0067 7.5 .0105
2 10 10 75 4.5 .0048 4.4 .0060
3 10 10 125 3.2 .0079 3.3 .0057
4 10 30 25 5.1 .0129 25.1 .0100
5 10 30 75 1.2 .0071 21.3 .0329
6 10 39 125 .3 .0024 20.2 .0446
7 10 50 25 4.4 .0123 44.4 .0146
8 10 5C 75 .6 .0060 40.9 .0395
9 10 50 125 .1 .0013 40.1 .0683
10 30 10 25 25.4 .0116 5.0 .0116
11 30 10 75 21.1 .0271 1.2 .0056
12 30 10 125 20.2 .0558 .3 .0030
13 30 30 25 18.5 .0164 18.4 .0210
14 30 30 75 8.5 .0251 8.4 .0270
15 30 30 125 5.1 .0307 5.1 .0352
16 30 50 25 14.6 .0223 34.6 .0308
17 30 50 75 3.0 .0138 23.6 .0542
18 30 50 125 1.0 .0075 20.6 .0446
19 50 10 25 44.0 .0169 4.3 .0104
20 50 10 75 40.2 .0410 .6 .0059
21 50 10 125 40.6 .0451 .1 .0015
22 50 30 25 34.3 .0279 14.4 .0368
23 50 30 75 23.1 .0375 3.1 .0194
24 50 30 125 20.5 .0739 .9 .0077
25 50 50 25 27.3 .0266 27.1 .0357
26 30 50 75 10.5 .0269 10.7 .0309
27 50 50 125 6.4 .0458 6.4 .0472
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MODEL

- wm D ey ew MR SR SN v v e R G MR YT Gh R G SR TR WD G WA e T e G e EE R R SR NS MR R AR R AR R SR A R e - = o = = = = = — =

- em = - . = -

1 10 10 25
2 10 10 75
3 10 10 125
4 10 30 25
5 10 30 75
6 10 30 125
7 10 50 25
8 10 50 75
9 10 50 125
10 30 10 25
11 30 10 75
12 30 10 125
13 30 30 25
14 30 30 75
15 30 30 125
16 30 50 25
17 30 50 75
18 30 50 125
19 50 10 25
20 50 10 75
21 50 10 125
22 50 30 25
23 50 30 75
24 50 30 125
25 50 50 25
26 50 50 75
27 50 50 125

N 00N

O‘P—‘ONOO\JO‘!OWO‘WW#‘\)ONOHHOGNU‘\]HO
®
res
[¢]]

OO WWWHNDNOCOTOIRONWHPEFN-N

« o e

- e e e = = —— - e o D - - = = - = = —— = = = = = = - = == = = — e = —— = =
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TABLE E.4 OUTPUT PARAMETERS OF THE BCD MODEL ESTIMATED
FROM SIMULATION USING STRATIFIED SAMPLING

— —
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TABLE E.5 EFFICIENCY OF STRATIFIED SAMPLING IN THE BCD
MODEL

- e e . - - - e ——— - —

1 10 19 25 1.6 39.0 2.2 54.4
2 10 19 75 1.6 36.0 1.5 33.8
3 10 10 125 2.3 57.3 2.1 52.8
4 10 30 25 2.6 62.2 2.1 653.4
5 10 30 75 2.1 51.6 2.0 49.4
6 10 30 125 .9 -5.%5 2.2 653.6
7 10 50 25 2.0 49.8 1.5 32.8
8 10 50 75 .8 -29.7 1.6 38.3
9 10 50 125 2.3 57.1 2.0 50.4
10 30 10 25 2.9 49.1 2.8 64.6
1M 30 10 75 1.9 48.4 1.2 16.3
12 30 10 125 2.6 61.0 1.7 40.0
13 >0 rz 25 3.3 69.7 4.4 771
14 30 >@ 75 3.7 T72.9 2.7 63.1
15 >0 P 125 3.9 74.5 3.1 68.2
16 30 50 25 2.9 65.1% 1.4 27.7
17 30 50 75 1.7 431.7 2.8 64.5
18 30 50 125 1.7 40.7 2.6 61.5
19 50 10 25 1.9 47.9 1.9 48.6
20 50 19 75 1.6 39.0 1.2 15.9
21 50 10 125 1.5 34.6 1.2 14.2
_ 22 50 30 25 3.0 66.2 1.9 46.9
' 23 S50 >0 75 2.8 64.5 1.8 45.1
24 50 30 125 2.2 54.7 1.2 19.6
25 50 50 25 2.5 60.4 1.4 27.8
26 50 50 75 3.0 66.9 3.3 69.2
27 50 50 125 2.3 57.1 2.8 63.7
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